устройство нейронов головного мозга

ВВЕДЕНИЕ В КОГНИТИВНЫЕ НЕЙРОНАУКИ. Глава 3. Нейроны и связи между ними.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Глава 3. Нейроны и связи между ними.

Что мы знаем о процессах, происходящих на уровне нейронов? Можем ли мы сейчас построить непротиворечивую теорию относительно событий на этом уровне?

Основными клетками мозга являются нейроны, высококонсервативные с эволюционной точки зрения. Они сохранялись в относительно неизменном виде в течение многих сотен миллионов лет, и даже очень разные виды животных имеют одинаковые типы нейронов. Со многих точек зрения нейроны не отличаются от остальных клеток, но есть то, что выделяет их среди остальных: специализация на электрохимической сигнализации, благодаря которой они способны принимать входящий сигнал на дендритах и посылать электрохимический сигнал вдоль аксона. Весь мозг можно рассматривать как сверхсложную структуру, состоящую из связанных между собой нейронов.

Дендритами и аксонами называют выросты тела нейрона; один нейрон может иметь до десяти тысяч дендритов и один аксон.

Потенциал действия (ПД) проходит по аксону значительно медленнее, чем электрический ток в компьютере, однако многие задачи наш мозг выполняет гораздо лучше современных компьютеров. В настоящее время компьютеры далеко отстоят от человека в задачах восприятия, языковой коммуникации, семантической памяти, контроля движения и творчества.

Нейробиология концентрирует внимание на связи и взаимодействии нейронов. Рассмотрение таких связей удобно начинать как раз с генерализованного нейрона.

Классические нейроны соединяются при помощи синапсов, которые могут быть возбуждающими и тормозящими.

Активность нейрона опосредована десятками факторов — циклом сна и бодрствования, доступностью предшественников нейромедиаторов и многими другими. Все эти факторы влияют на вероятность прохождения сигнала между двумя нейронами и могут быть представлены в виде синаптических весов. Таким образом, все разнообразие нейронов можно с успехом представить в виде интегративного нейрона, а все способы межнейронной коммуникации — в форме вероятности прохождения сигнала между нейронами.

Существует по меньшей мере шесть основных нейромедиаторов и не менее тридцати «менее важных», в основном являющихся нейропептидами.

Даже дендриты отдельной клетки, по всей видимости, способны к обработке информации. Имеются также данные, что способна принимать участие в обработке информации и нейроглия — поддерживающая ткань нервной системы.

На настоящий момент известно о существовании в некоторых частях взрослого головного мозга стволовых клеток. Образование новых синапсов идет в течение всей жизни; для образования новых синапсов отростки дендритов способны образовываться за несколько минут.

1.3. Обработка информации нейронами.

Искусственные нейронные сети использовались для моделирования многих функций мозга — распознавания элементов изображений, управления роботами, обучения и улучшения функционирования на основе опыта.

Во многих случаях такие сети выполняли задачи лучше, чем компьютерные программы, основанные на логике и математике.

Так же, они помогают нам понять принципы работы реальных нейронных сетей в мозге.

Нейросети помогают нам понять работу нервной системы.

Так искусственные нейросети могут служить моделями для изучения реальных структур в мозге.

Мы ограничимся рассмотрением синапсов только двух типов — возбуждающего (повышающего вероятность прохождения ПД (Потенциал действия) на постсинаптическом нейроне) и тормозящего (понижающего такую вероятность).

Глутамат — наиболее распространенный медиатор в ЦНС — является возбуждающим.

ГАМК (гаммаАминоМасляная кислота) является наиболее распространенным тормозным медиатором.

В нервной системе распространены массивы нейронов, часто именуемые картами.

2.1. Упрощенный случай: рецепторы, пути и контуры.

Каждый сенсорный нерв может содержать несколько параллельных каналов, каждый из которых проводит несколько различающуюся информацию. Так, зрительный тракт имеет канал передачи цвета, называемый мелкоклеточным, и канал передачи формы и размеров объекта, называемый крупноклеточным.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
Точно так же соматосенсорные пути сочетают каналы передачи прикосновения, давления, боли и некоторые другие.

Большинство сенсорных волокон оканчиваются в таламусе, где они передают сигнал нейронам, оканчивающимся в коре.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
(рис. 3.10 и 3.11)
устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
Таким образом, в большинстве сигнальных путей существуют петли обратной связи — такие, как в нейросети с двумя или более слоями.

С этой точки зрения мозг представляется системой воздействующих друг на друга массивов и сетей.

Массивы нейронов представляет собой двумерную сеть нейронов.

Когда массивы соответствуют пространственной организации той или иной структуры, их называют картами.

В мозге имеет место как временное, так и пространственное кодирование, наряду со многими другими способами кодирования и обработки информации.

Пространственные карты являются наиболее наглядной формой пространственного кодирования.

Таким образом, даже информация от не ассоциированных с пространством органов чувств обрабатывается массивами и картами нейронов.

Наш мозг организует огромные количества входящей информации так, чтобы отражать положение окружающих объектов. Моторная кора, как вы можете догадаться, также выглядит как непропорциональная карта скелетных мышц тела.

Главным вопросом относительно сенсорики на сегодняшний день яляется вопрос о том, как осуществляется высокоуровневая обработка воспринятой информации. И модель нейросетей предоставляет один из возможных ответов.

Мозг постоянно корректирует работу моторных систем на основании сенсорной информации и адаптирует сенсорные системы при помощи моторной активности.

Сенсорные системы можно представить в виде иерархических систем, состоящих из иерархических систем низшего порядка, начиная с рецепторов и постепенно переходя ко все более сложным объектам.

Идет непрерывный обмен информацией между двумя системами в процессе цикла от восприятия до действия, начиная с наинизшего и заканчивая высшими уровнями планирования, мышления и анализа возможного развития событий

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
(рис. 3.20 Иерархическая система из области архитектуры).

В схеме иерархической системы обработки информации, каждый массив нейронов назван картой; карты существуют на разных уровнях, и сигнал может идти вверх, вниз и к другой карте того же уровня.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

При рассмотрении электрической активности десятков миллиардов нейронов мозг поневоле начинает казаться огромным оркестром, а не одним инструментом. За сотни миллионов лет эволюции в мозге появились нейроны с самыми разными видами временного и пространственного кодирования (блок 3.1).

В путях следования информации имеется множество точек выбора, с которых она может быть направлена по нескольким различным путям или быть передана на уровень выше или ниже.

Если вернуться к ступенчатой пирамиде, то такой разветвленный путь похож на путь человека к вершине: он может достигнуть ее прямым или окружным путем.

Зрительная картина мира подвержена постоянным изменениям. Однако мозг тем не менее ведет обработку таких изменений. Животное не может позволить себе не заметить хищника, прячущегося в траве, только потому, что сейчас закат, или потому, что на него падает тень.

Для того чтобы выжить, мы должны были иметь превосходную зрительную систему.

Вот, например, кошка, выслеживающая жертву, может осматривать дерево только одним глазом, тогда как другой глаз остается пассивным. Это приводит к явлению бинокулярной конкуренции — конкуренции между зрительными входами от разных глаз.

Многие животные получают от разных глаз совершенно разные входы — такие животные, как кролики и олени, вообще не имеют участков перекрытия полей зрения, поэтому для них явление бинокулярной конкуренции невозможно.

Мозг постоянно имеет некоторые ожидания относительно встречаемых им внешних условий. Спускаясь по лестнице в темноте, мы ожидаем, что под ногой будет ступенька.

При анализе неоднозначно трактуемых объектов ожидание обусловливает выбор наиболее приемлемого варианта трактовки. Многие слова в языке имеют больше одного значения, поэтому, даже читая это, вы вынуждены иметь дело с неоднозначностями. Мозг опирается не только на входящую информацию — он имеет множество причин выбора того или иного варианта, основанных на предсказании результата и ожидании.

Селективное внимание позволяет нам динамически изменять свои сенсорные предпочтения, а долговременная память увеличивает силу синапсов, ответственных за точное восприятие.

Многие ученые считают, что всю кору целиком, наряду с сопутствующими областями, такими как таламус, следует рассматривать как одну функциональную единицу. Ее часто называют таламокортикальной системой.

Одним из основных свойств поведения животных является способность адаптироваться.

Основным свойством мозга, таким образом, является приспособляемость. Однако какие изменения в структуре самого мозга приводят к такой приспособляемости?

Для этих целей гораздо лучше подходят методы визуализации структур мозга, получившие интенсивное развитие в два прошедших десятилетия.

Хотя большая часть методов визуализации ориентирована на конкретную область, подчеркивая тем самым функциональное разделение, а не интеграцию, были предприняты попытки изучения обучения как системного процесса, включающего глобальные изменения структуры и функций мозга.

Развитие технологии магнитно-резонансной томографии позволило начать изучение изменений структурных компонентов связи — трактов белого вещества — под влиянием обучения.

Как было показано, обучение жонглированию вызывает изменения как в сером, так и в белом веществе мозга.

Данные результаты стали поистине революционными, поскольку долгие годы считалось, что структура мозга неизменна.

Подобные открытия, позволяющие рассматривать мозг как функционально и структурно лабильный орган, вне всякого сомнения являются шагом вперед в нашем понимании процесса обучения.

(4.0. Адаптация и обучение массивов нейронов).

Наиболее известное правило обучения нейросетей, выражаемое в лозунге «neurons that fire together, wire together».

Нейроны, которые срабатывают вместе, соединяются вместе.

(Обучение по Хэббу).

Дональд Хэбб в 1949 г. постулировал, что ассамблеи нейронов способны обучаться благодаря усилению связей между нейронами, активирующимися при стимуляции одновременно.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

В основе обучения и памяти лежит эффективность синаптической связи.

Существует множество способов воздействия на эффективность синаптической передачи. Так, два нейрона могут образовать больше синапсов, в самих синапсах может вырабатываться больше нейромедиатора, рецепторы постсинаптического нейрона могут стать эффективнее.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

В обучении задействовано два типа изменений; их можно рассматривать как усиленное возбуждение и усиленное торможение.

Долговременное усиление возбудимости одного нейрона называют долговременой потенциацией.

Долговременное понижение же — долговременной депрессией. Оба события имеют место в гиппокампе.

Визуально обучение по Хэббу можно представить в виде утолщения линий между узлами сети, как в простой совокупности клеток.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Модели с третьим, скрытым слоем позволяют нейросети изменять силу соединений.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Классическая трехслойная прямая сеть со скрытым слоем и настраиваемой силой взаимодействий может эффективно обучаться путем сопоставления выхода нейросети с желаемым выходом и подстройки силы соединений для достижения желаемого результата.

Процесс носит название обратного распространения ошибки обучения и во многом подобен отрицательной обратной связи.

Сети такого типа на сегодняшний день наиболее распространены.

В самоорганизующейся аутоассоциативной сети выход ставится в соответствие входу.

Такая стратегия полезна при распознавании паттернов, таких как звук знакомого голоса.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Самоорганизующиеся системы используются в природе для решения многих задач.

Сами организмы и их нервные системы можно рассматривать как самоорганизующиеся системы.

Самоорганизующаяся сеть способна справляться с фундаментальой проблемой распознавания человеческих лиц.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
Человек учится реагировать на нормальные, недеформированные лица в очень ранний период жизни и вскоре становится способен отличать знакомые лица от незнакомых.

Задача, решаемая сетью, гораздо проще решаемой человеком, поскольку в модели происходит только формирование цепи.

Сеть способна обучаться предугадывать расположение рта в нижней части рисунка и двух глаз — в верхней.

4.2. Дарвинистский подход в нервной системе: выживают клетки и синапсы, наиболее приспособленные к данной задаче.

Нейральный дарвинизм предполагает, что нейроны развиваются и соединяются друг с другом в соответствии с дарвинистскими принципами.

Селекционизм — эффективный способ адаптации.

Отбор нейронов приводит к образованию долгоживущих нейронных совокупностей, выполняющих задачи адаптации, обучения, разпознавания паттернов и им подобные.

Нейросети отличаются высоким уровнем параллельности (что означает способность производить много разных вычислений одновременно) и распределенности (способности обрабатывать информацию в разных местах с использованием разных механизмов).

Это говорит о большей близости нейросетей к биологическим способам обработки информации.

Нейронные сети довольно просто перевести на язык математических выражений.

Нейросети способны обрабатывать символьную информацию, а символы могут быть переведены в нейросети.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Обучение нейросети проявляются по мере распознавания сетью входа и отсечения ею альтернативных вариантов.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Существует масса способов координации работы нейронов. Одним из них являются масштабные ритмы, координирующие работу больших групп нейронов так же, как дирижер координирует игру симфонического оркестра. Если большая масса нейронов активируется одновременно, то их активность, как правило, суммируется.

Современные данные говорят в пользу гораздо более быстрых гамма- и тета-корреляций на тех частотах, на которых мозг выполняет большую часть этой работы.

Ритмы энцефалограммы на сегодняшний день считаются сигнализирующими о разных, но скоординированных процессах.

К примеру, гамма-ритмы высокой плотности считаются ассоциированными с осознанным зрительным восприятием и процессом решения простой проблемы эквивалентности.

Альфа-ритмы традиционно ассоциируются с отсутствием задач, требующих фокусировки внимания, тогда как тета-ритмы, как полагают на настоящий момент, контролируют гиппокампальную область и фронтальную кору в процессе обращения к долговременной памяти. Дельта-ритмы — сигналы глубокого сна — группируют быструю нейрональную активность с целью консолидации полученных данных.

При проектировании самолета инженеры закладывают в его конструкцию некоторую функциональную избыточность на случай выхода из строя важнейших систем. Так, если откажет один двигатель, то большая часть самолетов будет способна дотянуть до взлетно-посадочной полосы на оставшихся.

Человек и животные также обладают определенной функциональной избыточностью.

Мозга это правило тоже касается. Мозг способен работать даже после получения весьма значительных повреждений.

Латеральное торможение является распространенной стратегией для выделения различий между двумя однородными областями сигнала, такими как темные пятна на светлом фоне.

Клетки сенсорных систем имеют так называемые рецептивные поля, настроенные на определенные параметры входа, такие как ориентация линии, цвет, движение, форма и тип объекта. При повышении уровня визуальных карт их разрешение падает, в то время как способность к интеграции информации растет.

Поскольку сенсорные и моторные системы изучают отдельно друг от друга, мозг представляется нам огромным сенсомоторным органом, делающим возможным непрерывные высокоуровневые взаимодействия между входом и выходом.

Пространственные массивы нейронов делают возможным пространственное кодирование, однако не стоит забывать о том, что в нервной системе имеется еще и кодирование временное. Основные ритмы энцефалограммы, как полагают, отвечают за временную координацию активности больших групп нейронов.

Последние исследования позволяют предположить, что гамма-ритм ответственен за интеграцию сенсорной информации осознанные ощущения, а тета-ритм — за извлечение информации из долговременной памяти.

Контрольные задания к этой главе.

1. Опишите основные функции интегративного нейрона.

2. Что такое латеральное торможение и какую роль оно играет в сенсорных системах?

3. Каким образом сенсорные и моторные системы можно рассматривать в форме иерархических структур?

4. Опишите роль двусторонних взаимодействий в функционировании мозга.

5. Что такое дарвинистский подход к нервной системе и какие аспекты процессов, происходящих в мозге, он затрагивает?

6. Назовите три наиболее общих свойства сенсорных систем.

Источник

Как работает наш мозг или как смоделировать душу?

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Здравствуй, Geektimes! В ранее опубликованной статье, была представлена модель нервной системы, опишу теорию и принципы, которые легли в её основу.

Теория основана на анализе имеющейся информации о биологическом нейроне и нервной системе из современной нейробиологии и физиологии мозга.

Сначала приведу краткую информацию об объекте моделирования, вся информация изложена далее, учтена и использована в модели.

НЕЙРОН

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Нейрон является основным функциональным элементом нервной системы, он состоит из тела нервной клетки и её отростков. Существуют два вида отростков: аксоны и дендриты. Аксон – длинный покрытый миелиновой оболочкой отросток, предназначенный для передачи нервного импульса на далекие расстояния. Дендрит – короткий, ветвящийся отросток, благодаря которым происходит взаимосвязь с множеством соседних клеток.

ТРИ ТИПА НЕЙРОНОВ

Нейроны могут сильно отличаться по форме, размерам и конфигурации, не смотря на это, отмечается принципиальное сходство нервной ткани в различных участках нервной системе, отсутствуют и серьезные эволюционные различия. Нервная клетка моллюска Аплизии может выделять такие же нейромедиаторы и белки, что и клетка человека.

В зависимости от конфигурации выделяют три типа нейронов:
устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

а) рецепторные, центростремительные, или афферентные нейроны, данные нейроны имеют центростремительный аксон, на конце которого имеются рецепторы, рецепторные или афферентные окончания. Эти нейроны можно определить, как элементы, передающие внешние сигналы в систему.

б) интернейроны (вставочные, контактные, или промежуточные) нейроны, не имеющие длинных отростков, но имеющие только дендриты. Таких нейронов в человеческом мозгу больше чем остальных. Данный вид нейронов является основным элементом рефлекторной дуги.

в) моторные, центробежные, или эфферентные, они имеют центростремительный аксон, который имеет эфферентные окончания передающий возбуждение мышечным или железистым клеткам. Эфферентные нейроны служат для передачи сигналов из нервной среды во внешнюю среду.

Обычно в статьях по искусственным нейронным сетям оговаривается наличие только моторных нейронов (с центробежным аксоном), которые связаны в слои иерархической структуры. Подобное описание применимо к биологической нервной системе, но является своего рода частным случаем, речь идет о структурах, базовых условных рефлексов. Чем выше в эволюционном значении нервная система, тем меньше в ней превалируют структуры типа «слои» или строгая иерархия.

ПЕРЕДАЧА НЕРВНОГО ВОЗБУЖДЕНИЯ

Передача возбуждения происходит от нейрона к нейрону, через специальные утолщения на концах дендритов, называемых синапсами. По типу передачи синапсы разделяют на два вида: химические и электрические. Электрические синапсы передают нервный импульс непосредственно через место контакта. Таких синапсов в нервных системах очень мало, в моделях не будут учитываться. Химические синапсы передают нервный импульс посредством специального вещества медиатора (нейромедиатора, нейротрансмиттера), данный вид синапса широко распространен и подразумевает вариативность в работе.
Важно отметить, что в биологическом нейроне постоянно происходят изменения, отращиваются новые дендриты и синапсы, возможны миграции нейронов. В местах контактов с другими нейронами образуются новообразования, для передающего нейрона — это синапс, для принимающего — это постсинаптическая мембрана, снабжаемая специальными рецепторами, реагирующими на медиатор, то есть можно говорить, что мембрана нейрона — это приемник, а синапсы на дендритах — это передатчики сигнала.

СИНАПС

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

При активации синапса он выбрасывает порции медиатора, эти порции могут варьироваться, чем больше выделится медиатора, тем вероятнее, что принимаемая сигнал нервная клетка будет активирована. Медиатор, преодолевая синоптическую щель, попадает на постсинаптическую мембрану, на которой расположены рецепторы, реагирующие на медиатор. Далее медиатор может быть разрушен специальным разрушающим ферментом, либо поглощен обратно синапсом, это происходит для сокращения времени действия медиатора на рецепторы.
Так же помимо побудительного воздействия существуют синапсы, оказывающие тормозящее воздействие на нейрон. Обычно такие синапсы принадлежат определенным нейронам, которые обозначаются, как тормозящие нейроны.
Синапсов связывающих нейрон с одной и той же целевой клеткой, может быть множество. Для упрощения примем, всю совокупность, оказываемого воздействия одним нейроном, на другой целевой нейрон за синапс с определённой силой воздействия. Главной характеристикой синапса будет, является его сила.

СОСТОЯНИЕ ВОЗБУЖДЕНИЯ НЕЙРОНА

В состоянии покоя мембрана нейрона поляризована. Это означает, что по обе стороны мембраны располагаются частицы, несущие противоположные заряды. В состоянии покоя наружная поверхность мембраны заряжена положительно, внутренняя – отрицательно. Основными переносчиками зарядов в организме являются ионы натрия (Na+), калия (K+) и хлора (Cl-).
Разница между зарядами поверхности мембраны и внутри тела клетки составляет мембранный потенциал. Медиатор вызывает нарушения поляризации – деполяризацию. Положительные ионы снаружи мембраны устремляются через открытые каналы в тело клетки, меняя соотношение зарядов между поверхностью мембраны и телом клетки.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
Изменение мембранного потенциала при возбуждении нейрона

Характер изменений мембранного потенциала при активации нервной ткани неизменен. Независимо от того кокой силы воздействия оказывается на нейрон, если сила превышает некоторое пороговое значение, ответ будет одинаков.
Забегая вперед, хочу отметить, что в работе нервной системы имеет значение даже следовые потенциалы (см. график выше). Они не появляются, вследствие каких-то гармонических колебаний уравновешивающих заряды, являются строгим проявлением определённой фазы состояния нервной ткани при возбуждении.

ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ

Итак, далее приведу теоретические предположения, которые позволят нам создавать математические модели. Главная идея заключается во взаимодействии между зарядами формирующихся внутри тела клетки, во время её активности, и зарядами с поверхностей мембран других активных клеток. Данные заряды являются разноименными, в связи этим можно предположить, как будут располагаться заряды в теле клетки под воздействием зарядов других активных клеток.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Можно сказать, что нейрон чувствует активность других нейронов на расстоянии, стремится направить распространения возбуждения в направлении других активных участков.
В момент активности нейрона можно рассчитать определённую точку в пространстве, которая определялась бы, как сумма масс зарядов, расположенных на поверхностях других нейронов. Указанную точку назовем точкой паттерна, её месторождение зависит от комбинации фаз активности всех нейронов нервной системы. Паттерном в физиологии нервной системы называется уникальная комбинация активных клеток, то есть можно говорить о влиянии возбуждённых участков мозга на работу отдельного нейрона.
Нужно представлять работу нейрона не просто как вычислителя, а своего рода ретранслятор возбуждения, который выбирает направления распространения возбуждения, таким образом, формируются сложные электрические схемы. Первоначально предполагалось, что нейрон просто избирательно отключает/включает для передачи свои синапсы, в зависимости от предпочитаемого направления возбуждения. Но более детальное изучение природы нейрона, привело к выводам, что нейрон может изменять степень воздействия на целевую клетку через силу своих синапсов, что делает нейрон более гибким и вариативным вычислительным элементом нервной системы.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Какое же направление для передачи возбуждения является предпочтительным? В различных экспериментах связанных с образованием безусловных рефлексов, можно определить, что в нервной системе образуются пути или рефлекторные дуги, которые связывают активируемые участки мозга при формировании безусловных рефлексов, создаются ассоциативные связи. Значит, нейрон должен передавать возбуждения к другим активным участкам мозга, запоминать направление и использовать его в дальнейшем.
Представим вектор начало, которого находится в центре активной клети, а конец направлен в точку паттерна определённую для данного нейрона. Обозначим, как вектор предпочитаемого направления распространения возбуждения (T, trend). В биологическом нейроне вектор Т может проявляться в структуре самой нейроплазмы, возможно, это каналы для движения ионов в теле клетки, или другие изменения в структуре нейрона.
Нейрон обладает свойством памяти, он может запоминать вектор Т, направление этого вектора, может меняться и перезаписываться в зависимости от внешних факторов. Степень с которой вектор Т может подвергается изменениям, называется нейропластичность.
Этот вектор в свою очередь оказывает влияние на работу синапсов нейрона. Для каждого синапса определим вектор S начало, которого находится в центре клетки, а конец направлен в центр целевого нейрона, с которым связан синапс. Теперь степень влияния для каждого синапса можно определить следующим образом: чем меньше угол между вектором T и S, тем больше синапс будет, усиливается; чем меньше угол, тем сильнее синапс будет ослабевать и возможно может прекратить передачу возбуждения. Каждый синапс имеет независимое свойство памяти, он помнит значение своей силы. Указанные значения изменяются при каждой активизации нейрона, под влиянием вектора Т, они либо увеличиваются, либо уменьшаются на определённое значение.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Входные сигналы (x1, x2,…xn) нейрона представляют собой вещественные числа, которые характеризуют силу синапсов нейронов, оказывающих воздействие на нейрон.
Положительное значение входа означает побудительное воздействие, оказываемое на нейрон, а отрицательное значение – тормозящее воздействие.
Для биологического нейрона не имеет значение, откуда поступил возбуждающий его сигнал, результат его активности будет идентичен. Нейрон будет активизирован, когда сумма воздействий на него будет превышать определённое пороговое значение. Поэтому, все сигналы проходят через сумматор (а), а поскольку нейроны и нервная система работают в реальном времени, следовательно, воздействие входов должно оцениваться в короткий промежуток времени, то есть воздействие синапса имеет временный характер.
Результат сумматора проходит пороговую функцию (б), если сумма превосходит пороговое значение, то это приводит к активности нейрона.
При активации нейрон сигнализирует о своей активности системе, передовая информацию о своём положении в пространстве нервной системы и заряде, изменяемом во времени (в).
Через определённое время, после активации нейрон передает возбуждение по всем имеющимся синапсам, предварительно производя пересчет их силы. Весь период активации нейрон перестает реагировать на внешние раздражители, то есть все воздействия синапсов других нейронов игнорируются. В период активации входит так же период восстановления нейрона.
Происходит корректировка вектора Т (г) с учётом значения точки паттерна Pp и уровнем нейропластичности. Далее происходит переоценка значений всех сил синапсов в нейроне(д).
Обратите внимание, что блоки (г) и (д) выполняются параллельно с блоком (в).

ЭФФЕКТ ВОЛНЫ

Если внимательно проанализировать предложенную модель, то можно увидеть, что источник возбуждения должен оказывать большее влияние на нейрон, чем другой удалённый, активный участок мозга. Следовательно возникает вопрос: почему же все равно происходит передача в направлении другого активного участка?
Данную проблему я смог определить, только создав компьютерную модель. Решение подсказал график изменения мембранного потенциала при активности нейрона.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Усиленная реполяризация нейрона, как говорилось ранее, имеет важное значение для нервной системы, благодаря ей создается эффект волны, стремление нервного возбуждения распространятся от источника возбуждения.
При работе с моделью я наблюдал два эффекта, ели пренебречь следовым потенциалом или сделать его недостаточно большим, то возбуждение не распространяется от источников, а в большей степени стремится к локализации. Если сделать следовой потенциал сильно большим, то возбуждение стремится «разбежаться» в разные стороны, не только от своего источника, но и от других.

КОГНИТИВНАЯ КАРТА

Используя теорию электромагнитного взаимодействия, можно объяснить многие явления и сложные процессы, протекающие в нервной системе. К примеру, одним из последних открытий, которое широко обсуждается в науках о мозге, является открытие когнитивных карт в гиппокампе.
Гиппокамп – это отдел мозга, которому отвечает за кратковременную память. Эксперименты на крысах выявили, что определённому месту в лабиринте соответствует своя локализованная группа клеток в гиппокампе, причем, не имеет значение, как животное попадает в это место, все равно будет активирован соответствующий этому месту участок нервной ткани. Естественно, животное должно помнить данный лабиринт, не стоит рассчитывать на топологическое соответствие пространства лабиринта и когнитивной карты.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга

Каждое место в лабиринте представляется в мозге, как совокупность раздражителей различного характера: запахи, цвет стен, возможные примечательные объекты, характерные звуки и т. д. Указанные раздражители отражаются на коре, различных представительствах органов чувств, в виде всплесков активности в определённых комбинациях. Мозг одновременно обрабатывает информацию в нескольких отделах, зачастую информационные каналы разделяются, одна и та же информация поступает в различные участки мозга.

устройство нейронов головного мозга. Смотреть фото устройство нейронов головного мозга. Смотреть картинку устройство нейронов головного мозга. Картинка про устройство нейронов головного мозга. Фото устройство нейронов головного мозга
Активация нейронов места в зависимости от положения в лабиринте (активность разных нейронов показана разным цветом). источник

Гиппокамп расположен в центре мозга, вся кара и её области удалены от него, на одинаковые расстояния. Если определить для каждой уникальной комбинации раздражителей точку масс зарядов поверхностей нейронов, то можно увидеть, что указанные точки будут различны, и будут находиться примерно в центре мозга. К этим точкам будет стремиться и распространятся возбуждение в гиппокампе, формируя устойчивые участки возбуждения. Более того, поочередная смена комбинаций раздражителей, будет приводить к смещению точки паттерна. Участки когнитивной карты будут ассоциативно связываться друг с другом последовательно, что приведет к тому, что животное, помещенное в начало знакомого ей лабиринта, может вспомнить весь последующий путь.

Заключение

У многих возникнет вопрос, где в данной работе предпосылки к элементу разумности или проявления высшей интеллектуальной деятельности?
Важно отметить, что феномен человеческого поведения, есть следствие функционирования биологической структуры. Следовательно, чтобы имитировать разумное поведение, необходимо хорошо понимать принципы и особенности функционирования биологических структур. К сожалению, в науке биологии пока не представлен четкий алгоритм: как работает нейрон, как понимает, куда необходимо отращивать свои дендриты, как настроить свои синапсы, что бы в нервной системе смог сформироваться простой условный рефлекс, на подобие тех, которые демонстрировал и описывал в своих работах академик И.П. Павлов.
С другой стороны в науке об искусственном интеллекте, в восходящем (биологическом) подходе, сложилось парадоксальная ситуация, а именно: когда используемые в исследованиях модели основаны на устаревших представлениях о биологическом нейроне, консерватизм, в основе которого берётся персептрон без переосмысления его основных принципов, без обращения к биологическому первоисточнику, придумывается все более хитроумные алгоритмы и структуры, не имеющих биологических корней.
Конечно, никто не уменьшает достоинств классических нейронных сетей, которые дали множество полезных программных продуктов, но игра с ними не является путем к созданию интеллектуально действующей системы.
Более того, не редки заявления, о том, что нейрон подобен мощной вычислительной машине, приписывают свойство квантовых компьютеров. Из-за этой сверхсложности, нервной системе приписывается невозможность её повторения, ведь это соизмеримо с желанием смоделировать человеческую душу. Однако, в реальности природа идет по пути простоты и элегантности своих решений, перемещение зарядов на мембране клетки может служить, как для передачи нервного возбуждения, так и для трансляции информации о том, где происходит данная передача.
Несмотря на то, что указанная работа демонстрирует, как образуются элементарные условные рефлексы в нервной системе, она приближает к пониманию того, что такое интеллект и разумная деятельность.

Существуют еще множество аспектов работы нервной системы: механизмы торможения, принципы построения эмоций, организация безусловных рефлексов и обучение, без которых невозможно построить качественную модель нервной системы. Есть понимание, на интуитивном уровне, как работает нервная система, принципы которой возможно воплотить в моделях.
Создание первой модели помогли отработать и откорректировать представление об электромагнитном взаимодействии нейронов. Понять, как происходит формирование рефлекторных дуг, как каждый отдельный нейрон понимает, каким образом ему настроить свои синапсы для получения ассоциативных связей.
На данный момент я начал разрабатывать новую версию программы, которая позволит смоделировать многие другие аспекты работы нейрона и нервной системы.

Прошу принять активное участие в обсуждении выдвинутых здесь гипотез и предположений, так как я могу относиться к своим идеям предвзято. Ваше мнение очень важно для меня.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *