восприятие звуковых сигналов осуществляется какой долей головного мозга

Восприятие звуковых сигналов осуществляется какой долей головного мозга

На рисунке ниже показана проекционная слуховая зона мозговой коры, которая лежит главным образом в надвисочной плоскости верхней височной доли, но также распространяется на латеральную сторону височной доли, на большую часть островковой коры и даже на латеральную часть теменной покрышки.

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозгаСлуховая кора

На рисунке выше показаны две отдельные части слуховой коры: первичная слуховая кора и ассоциативная слуховая кора (называемая также вторичной слуховой корой). Первичная слуховая кора непосредственно возбуждается проекциями от медиального коленчатого тела, тогда как ассоциативная слуховая кора возбуждается вторично импульсами из первичной слуховой коры, а также проекциями из таламических ассоциативных зон, прилежащих к медиальному коленчатому телу.

а) Восприятие частоты звука в первичной слуховой коре. В первичной слуховой коре и ассоциативной слуховой коре обнаружены, по крайней мере, шесть тонотопических карт. В каждой из этих карт высокочастотные звуки возбуждают нейроны у одного конца карты, а низкочастотные звуки — у противоположного конца. В основном, как видно на рисунке выше, низкочастотные звуки локализуются спереди, а высокочастотные — сзади.

Это справедливо не для всех карт. Возникает вопрос: почему слуховая кора имеет так много разных карт? Ответ, вероятно, в том, что каждая из отдельных областей анализирует одно из специфических свойств звука. Например, одна из больших карт в первичной слуховой коре, вероятно, различает сами звуковые частоты и дает человеку физическое ощущение высоты звуков. Другая карта, вероятно, используется для определения направления, откуда исходит звук.

Другие области слуховой коры выделяют особые качества, например внезапное начало звуков, или, возможно, особые модуляции, например выделение звуков определенной частоты из шума.

Диапазон частот, на которые реагирует каждый нейрон слуховой коры, гораздо уже, чем в улитке и релейных ядрах мозгового ствола. Вновь обратившись к рисунку, можно видеть, что базальная мембрана улитки стимулируется звуками всех частот, и такое же широкое звуковое представительство обнаруживается в улитковых ядрах. Однако когда возбуждение достигает мозговой коры, большинство звукочувствительных нейронов реагируют лишь на узкий, а не на широкий диапазон частот.

Следовательно, где-то по пути механизмы анализа «обостряют» реакцию на частоту. Полагают, что причиной этого обостряющего эффекта является главным образом феномен латерального торможения. Это значит, что стимуляция улитки одной частотой тормозит звуковые частоты с обеих сторон этой первичной частоты; причиной являются коллатеральные волокна, ответвляющиеся от первичного сигнального пути и оказывающие тормозное влияние на прилежащие пути. Важность такого эффекта показана также для усиления особенностей соматосенсорных, зрительных и других типов ощущений.

Многие нейроны слуховой коры, особенно в ассоциативной слуховой коре, не просто реагируют на специфические звуковые частоты в ухе. Полагают, что эти нейроны «связывают» разные звуковые частоты друг с другом или звуковую информацию с информацией от других сенсорных областей коры. Действительно, теменная часть ассоциативной слуховой коры частично перекрывает соматосенсорную область II, что, вероятно, обеспечивает возможность ассоциации слуховой информации с соматосенсорной.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Локализация звуков: как мозг распознает источники звуков

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга

Мир, окружающий нас, наполнен всевозможной информацией, которую наш мозг непрерывно обрабатывает. Получает он эту информацию посредством органов чувств, каждый из которых отвечает за свою долю сигналов: глаза (зрение), язык (вкус), нос (обоняние), кожа (осязание), вестибулярный аппарат (равновесие, положение в пространстве и чувство веса) и уши (звук). Собрав воедино сигналы от всех этих органов, наш мозг может построить точную картину окружающей среды. Но далеко не все аспекты обработки внешних сигналом нам известны. Одной из таких тайн является механизм локализации источника звуков.

Ученые из лаборатории нейроинженерии речи и слуха (технологический институт Нью-Джерси) предложили новую модель нейронного процесса локализации звука. Какие именно процессы протекают в головном мозге во время восприятия звука, как наш мозг понимает положение источника звука и как данное исследование может помочь в борьбе с дефектами слуха. Об этом мы узнаем из доклада исследовательской группы. Поехали.

Основа исследования

Информация, которую получает наш мозг от органов чувств, отличается друг от друга как с точки зрения источника, так и с точки зрения ее обработки. Одни сигналы сразу предстают перед нашим мозгом в виде точной информации, другие же нуждаются в дополнительных вычислительных процессах. Грубо говоря, прикосновение мы чувствуем сразу, а вот услышав звук, нам предстоит еще найти откуда он исходит.

Основой локализации звуков в горизонтальной плоскости является интерауральная* разница во времени (ITD от interaural time difference) звуков, достигающих ушей слушателя.

Интерауральная база* — расстояние между ушами.

В головном мозге имеется определенный участок (медиальная верхняя олива или МВО), который отвечает за этот процесс. В момент получения звукового сигнала в МВО происходит преобразование интерауральных разниц во времени в скорость реакции нейронов. Форма кривых скорости выходного сигнала МВО как функции ITD напоминает форму взаимнокорреляционную функцию входных сигналов для каждого уха.

То, как обрабатывается и интерпретируется информация в МВО, остается не до конца ясным, из-за чего существует несколько весьма противоречивых теорий. Самой известной и по факту классической теорией локализации звука является модель Джеффресса (Lloyd A. Jeffress). Она основана на маркированной линии* нейронов-детекторов, которые чувствительны к бинауральной синхронности нейронных входных сигналов от каждого уха, причем каждый нейрон максимально чувствителен к определенной величине ITD ().

Принцип маркированной линии* — гипотеза, объясняющая, как разные нервы, все из которых используют одни и те же физиологические принципы при передаче импульсов вдоль своих аксонов, способны генерировать разные ощущения. Структурно сходные нервы могут генерировать различные сенсорные восприятия, если они связаны с уникальными нейронами в центральной нервной системе, которые способны декодировать сходные нервные сигналы различными способами.

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга
Изображение №1

Данная модель в вычислительном плане похожа на нейронное кодирование, основанное на неограниченных взаимных корреляциях звуков, достигающих обоих ушей.

Также существует модель, в которой предполагается, что локализация звука может быть смоделирована на основе различий в скорости реакции определенных популяций нейронов из разных полушарий мозга, т.е. модель межполушарной асимметрии ().

Доселе было сложно однозначно заявить какая из двух теорий (моделей) правильная, учитывая что каждая из них предсказывает разные зависимости локализации звука от интенсивности звука.

В рассматриваемом нами сегодня исследовании ученые решили объединить обе модели, чтобы понять, основано ли восприятие звуков на нейронном кодировании или на разнице реакции отдельно взятых нейронных популяций. Было проведено несколько экспериментов, в которых брали участие люди в возрасте от 18 до 27 лет (5 женщин и 7 мужчин). Аудиометрия (измерение остроты слуха) участников составляла 25 дБ или выше при частоте от 250 до 8000 Гц. Участника опытов размещали в звукоизолированной комнате, в которой было размещено специальное оборудование, откалиброванное с высокой точностью. Участники должны были, услышав звуковой сигнал, указать направление, откуда он исходит.

Результаты исследования

Латеральность* — асимметрия левой и правой половин тела.

Для оценки зависимости латерализации мозговой активности от скорости реакции определенных популяций нейронов были использованы данные активности нижнего двухолмия мозга макаки-резуса, после чего дополнительно были рассчитаны различия в скорости нейронов из разных полушарий.

Модель маркированной линии нейронов-детекторов предполагает, что при уменьшении интенсивности звука латеральность воспринимаемого источника будет сходиться в средних значениях, схожих для отношения тихих и громких звуков ().

Модель межполушарной асимметрии, в свою очередь, предполагает, что при снижении интенсивности звука до почти пороговых воспринимаемая латеральность будет смещаться к средней линии (1D).

При более высокой общей интенсивности звука предполагается, что латерализация будет инвариантной по интенсивности (вставки на и 1D).

Следовательно, анализ того, как интенсивность звука влияет на воспринимаемое направление звука, позволяет точно определить природу протекающих в этот момент процессов — нейроны из одной общей области или нейроны из разных полушарий.

Очевидно, что способность человека различать ITD может варьироваться в зависимости от интенсивности звука. Однако ученые заявляют, что достаточно сложно интерпретировать предыдущие выводы, связывающие чувствительность к ITD и оценку слушателем направления источника звука как функции интенсивности звука. Одни исследования говорят, что при достижении интенсивности звука к граничному порогу, снижается воспринимаемая латеральность источника. Другие же исследования говорят о том, что влияния интенсивности на восприятие нет вообще.

Другими словами, ученые «мягко» намекают, что в литературе достаточно мало информации касательно связи ITD, интенсивности звука и определения направления его источника. Есть теории, которые существуют как своего рода аксиомы, общепринятые научным сообществом. Посему было решено детально проверить все теории, модели и возможные механизмы восприятия слуха на практике.

Первый эксперимент был поставлен на основе использования психофизической парадигмы, что позволило изучить латерализацию на основе ITD как функцию интенсивности звука в группе из десяти нормально слышащих участников опыта.

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга
Изображение №2

Источники звука были специально настроены так, чтобы охватывать большую часть частотного диапазона, в пределах которого люди способны распознавать ITD, т.е. от 300 до 1200 Гц ().

В каждом из испытаний слушатель должен был указать предполагаемую латеральность, измеряемую как функцию уровня ощущений, в диапазоне значений ITD от 375 до 375 мс. Чтобы определить влияние интенсивности звука, использовалась нелинейная модель смешанного эффекта (NMLE), которая включала как фиксированную, так и случайную интенсивность звука.

График демонстрирует оцененную латерализацию со спектрально плоским шумом при двух интенсивностях звука для репрезентативного слушателя. А график показывает необработанные данные (круги) и подогнанные под модель NMLE (линии) всех слушателей.

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга
Таблица №1

Таблица выше показывает все параметры NLME. Видно, что воспринимаемая латеральность возрастала при увеличении ITD, как того и ожидали ученые. С уменьшением интенсивности звука восприятие все больше смещалось в сторону средней линии (вставка на графике 2C).

Эти тенденции были подкреплены моделью NLME, которая показала существенное влияние ITD и интенсивности звука на максимальную степень латеральности, подтверждая модель межполушарных отличий.

Кроме того, незначительное влияние на воспринимаемую латеральность имели средние аудиометрические пороги чистых тонов. А вот интенсивность звука существенно не влияла на показатели психометрических функций.

Основной целью второго эксперимента было определение того, как полученные в предыдущем эксперименте результаты поменяются при учете спектральных особенностей стимулов (звуков). Необходимость проверки спектрально плоского шума при низкой интенсивности звука состоит в том, что части спектра могут быть не слышны, и это может повлиять на определение направления звука. Следовательно, за результаты первого эксперимента можно ошибочно принять факт того, что ширина слышимой части спектра может уменьшаться с уменьшением интенсивности звука.

Потому было решено провести еще один опыт, но уже с применением обратно А-взвешенных* шумов.

А-взвешивание* применяется к уровням звука, чтобы учесть относительную громкость, воспринимаемую человеческим ухом, поскольку ухо менее чувствительно к низким звуковым частотам. А-взвешивание реализуется путем арифметического добавления таблицы значений, перечисленных в октавных полосах, к измеренным уровням звукового давления в дБ.

На графике 2D показаны необработанные данные (круги) и подогнанные под модель NMLE данные (линии) всех участников эксперимента.

Анализ данных показал, что когда все части звука являются примерно одинаково слышимыми (как в первом, так и во втором опыте), воспринимаемая латеральность и наклон на графике, поясняющий изменение латеральности с ITD, уменьшаются с падением интенсивности звука.

Таким образом, результаты второго эксперимента подтвердили результаты первого. То есть на практике было показано, что модель, предложенная еще в 1948 году Джеффрессом, не является правильной.

Получается, что локализация звуков ухудшается при снижении интенсивности звука, а Джеффресс считал, что звуки воспринимаются и обрабатываются человеком одинаково вне зависимости от их интенсивности.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог

Теоретические предположения и подтверждающие их практические опыты показали, что нейроны головного мозга у млекопитающих активируются с разной скоростью в зависимости от направления звукового сигнала. Следом мозг сравнивает эти скорости между всеми задействованными в процессе нейронами для динамического построения карты звуковой среды.

Модель Джеффрессона на самом деле не на 100% ошибочна, так как с ее помощью можно идеально описать локализацию источника звука у сипух. Да, для сипух интенсивность звука не имеет значения, они в любом случае определят положение его источника. Однако эта модель не работает с макаками-резусами, как показали ранее проведенные опыты. Следовательно, эта модель Джеффрессона не может описать локализацию звуков для всех живых существ.

Эксперименты с участием людей лишний раз подтвердили, что локализация звуков протекает у разных организмов по-разному. Многие из участников не смогли верно определить положение источника звуковых сигналов из-за низкой интенсивности звуков.

Ученые считают, что их труд показывает определенную схожесть между тем, как мы видим и как мы слышим. Оба процесса связаны со скоростью нейронов в разных участках мозга, а также с оценкой этой разницы для определения как положения видимых нами предметов в пространстве, так и положения источника слышимого нами звука.

В дальнейшем исследователи собираются провести ряд экспериментов для более детального рассмотрения связи между слухом и зрением человека, что позволит лучше понять, как именно наш мозг динамически строит карту окружающего мира.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята! 🙂

Источник

От звуковой волны до слуха

Автор: Редакция Мастерслух

Звук играет важнейшую роль в жизни большинства людей. Он позволяет нам общаться и получать информацию, наслаждаться звуками природы и слушать музыку. Звук также может предупредить нас об опасности.

Все звуки возникают в результате движений. Например, когда дует ветер, на деревьях возникает движение листвы. Листья передвигают молекулы воздуха, заставляя их колебаться. Эти колебания называются звуковыми волнами и могут восприниматься ухом человека.

Медленные колебания (низкие частоты) воспринимаются как низкие звуки (бас), в то время как быстрые колебания (высокие частоты) воспринимаются как высокие звуки (дискант).

Человеческое ухо является сложным и чувствительным органом, который состоит из трех главных частей:

Передвижение жидкости активизирует волосковые клетки во внутреннем ухе (этих «чувствительных клеток» около 20 000). При возбуждении волосковые клетки посылают импульсы по слуховому нерву в мозг, который воспринимает эти импульсы в качестве звука.

Таким причудливым и сложным путем ухо в состоянии улавливать звуковые волны, преобразовывать их сначала в колебания косточек, затем в движение жидкости и, в конечном счете, в нервные импульсы, которые воспринимаются мозгом. Даже малейшее повреждение этой сложной системы может негативно отразится на слухе.

Расскажите или сохраните себе:

Еще в разделе “О слухе”

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга

Краткая история кохлеарной имплантации

Сегодня кохлеарная имплантация – сложное, но в общем-то рутинное медицинское вмешательство. Через него прошли около полумиллиона людей по всему миру – иначе они бы не получили возможность слышать. Операцию делают даже младенцам! Технологический прорыв произошел всего за несколько десятилетий. Об этом – в нашей статье. Читать далее →

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга

Взаимопомощь – основа добра и милосердия

Во время пандемии коронавируса «МастерСлух» продолжает помогать своим подопечным, представителям старшего поколения, жителям домов-интернатов для престарелых и инвалидов. Читать далее →

восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть фото восприятие звуковых сигналов осуществляется какой долей головного мозга. Смотреть картинку восприятие звуковых сигналов осуществляется какой долей головного мозга. Картинка про восприятие звуковых сигналов осуществляется какой долей головного мозга. Фото восприятие звуковых сигналов осуществляется какой долей головного мозга

Добрый доктор. Что нужно знать о визитах к сурдопедагогу

Консультация сурдопедагога: зачем она нужна, как проходит, сколько визитов к специалисту требуется и в каких случаях. Рассказывает сурдопедагог «МастерСлух» Наталья Васильева. Читать далее →

Источник

Восприятие звуковых сигналов осуществляется какой долей головного мозга

Для того, чтобы правильно представлять сложный механизм речевой деятельности в норме, дифференцированно подходить к анализу речевых нарушений и грамотно определять пути и направления коррекционной работы, необходимо знание анатомо-физиологических механизмов речи.
Речь – одна из сложных высших психических функций человека, которая обеспечивается деятельностью головного мозга.
Исследованиями П.К. Анохина, А.Н. Леонтьева, А.Р. Лурия и др. установлено, что основой всякой высшей психической функции являются сложные функциональные системы, в формировании которых принимают участие различные участки мозга, объединенные механизмом рефлекса.
Речевой аппарат состоит из центрального и периферического отделов.

Рис. 1. Строение речевого аппарата

1 – головной мозг; 2- носовая полость; 3 – твердое небо; 4 – ротовая полость; 5 – губы; 6 – резцы; 7 – кончик языка; 8 – спинка языка; 9 – корень языка; 10 – надгортанник; 11 – глотка; 12 – гортань; 13 – трахея; 14 – правый бронх; 15 – правое легкое; 16 – диафрагма; 17 – пищевод; 18 – позвоночник; 19 – спинной мозг; 20 – мягкое небо.

К центральному отделу речевого аппарата относится головной мозг – его кора, подкорковые узлы, проводящие пути и ядра соответствующих нервов.
Главенствующее значение в образовании речи имеет лобная, височная, теменная и затылочная доли преимущественно левого полушария мозга (у левшей правого). Лобные извилины являются речедвигательной областью и участвуют в образовании устной речи (центр Брока). Височные извилины, будучи речеслуховой областью (центр Вернике), отвечают за восприятие чужой речи. Теменная доля коры мозга обеспечивает понимание речи, а затылочная, являясь зрительной областью, имеет значение для усвоения письменной речи.
Подкорковые ядра отвечают за ритм, темп и выразительность речи.
Проводящие пути связывают кору головного мозга с периферическими органами речи. От центра к периферии идут центробежные пути, а от периферии к центру – центростремительные нервные пути.
В иннервации мышц речевого аппарата принимают участие следующие черепно-мозговые нервы:

Периферический речевой аппарат состоит из дыхательного, голосового и артикуляционного отделов.
Дыхательный отдел периферического речевого аппарата служит для подачи воздуха, голосовой – для образования голоса, артикуляционный – образует характерные звуки нашей речи в результате деятельности органов артикуляционного аппарата.
Дыхательный отдел включает в себя грудную клетку с лёгкими, бронхами и трахеей. Речь образуется в фазе выдоха, поэтому во время речи выдох намного длиннее вдоха (1:20 или даже 1:30). Длительный выдох нуждается в большем запасе воздуха. Поэтому в момент речи объём вдыхаемого и выдыхаемого воздуха увеличивается почти в 3 раза.
У ребенка речевое дыхание вырабатывается постепенно, в процессе речевого развития. Вначале ребенок пользуется в речи навыками жизненного дыхания. Такое дыхание остается в случаях рано возникающей речевой патологии.
Голосовой отдел состоит из гортани с находящимися в ней голосовыми складками. Гортань представляет собой трубку конусообразной формы, состоящую из нескольких хрящей. Вверху гортань граничит с глоткой, а внизу – с трахеей.
Голосовые складки своей массой почти полностью закрывают просвет гортани, оставляя узкую голосовую щель. При обычном дыхании голосовая щель расширяется (вдох), принимая вид равнобедренного треугольника, и сужается (выдох).
В основе механизма голосообразования лежит колебание голосовых складок гортани, на которые воздействует воздух, поступающий под определенным давлением из бронхов и лёгких. Колебания передаются в окружающую среду, и мы воспринимаем их как звуки голоса.
Основными органами артикуляционного отдела являются: язык, губы, верхняя и нижняя челюсти, твердое и мягкое нёбо, зубы, альвеолы, язык, губы, мягкое нёбо и нижняя челюсть – это подвижные органы артикуляции; зубы, альвеолы и твердое нёбо – неподвижные, которые не изменяют своего положения, но также участвуют в образовании звуков.

Рис. 2. Профиль органов артикуляции

1 — губы, 2 – резцы; 3 – альвеолы; 4 – твердое небо;
5 – мягкое небо; 6 – голосовые складки, 7 – корень языка; 8 – спинка языка; 9 – кончик языка.

Язык – самый активный и подвижный орган артикуляции, система мышц языка даёт возможность менять его форму, положение и степень напряжения. Язык участвует в образовании всех гласных и почти всех согласных звуков (кроме губных). Передняя часть языка подвижна и в ней различают кончик, передний края, боковые края и спинку. Задняя часть языка фиксирована и называется корнем языка.
От середины нижней поверхности языка ко дну ротовой полости спускается складка слизистой оболочки (так называется уздечка), которая ограничивает крайние движения языка. У некоторых детей эта уздечка укороченная от рождения. В грудном возрасте это затрудняет сосание, а позднее мешает правильно произносить звуки. В раннем возрасте уздечку подрезают. В более позднем возрасте необходима помощь логопеда и специальные упражнения для языка, помогающие растянуть уздечку.
Важная роль в образовании звуков речи помимо языка принадлежит также и другим органам артикуляции: твердому и мягкому нёбу. Совершая различные движения и принимая самые разнообразные положения, они видоизменяют форму ротовой полости, образуют в ней смычки, щели и т.п. Мягкое нёбо, поднимаясь и прижимаясь к задней стенке глотки, закрывает проход в нос, опускаясь, открывает его.
Движения активных органов артикуляции называют речевой моторикой, т.е. возможностью совершать движения и удерживать орган в заданном положении.
Образовавшийся в гортани голос усиливается и приобретает индивидуальный тембр благодаря резонансу в так называемой надставной трубе (глотка, ротовая и носовая полость). Надставная труба может менять форму и объем, что имеет большое значение для образования звуков речи. Именно эти изменения и создают явление резонанса.
При правильном произношении носовой резонатор участвует только в произнесении звуков м и и и их мягких вариантов. При произнесении других звуков нёбная занавеска, образуемая мягким нёбом и маленьким язычком, закрывает вход в полость носа.
При образовании звуков речи надставная труба кроме функции резонатора выполняет функцию шумового вибратора (функция звукового вибратора принадлежит голосовым складкам). Шумовым вибратором являются щели между губами, между зубами и губами, зубами и языком, языком и твердым нёбом, языком и альвеолами. При помощи шумового вибратора образуются глухие согласные, а одновременное колебание голосовых складок и шумового вибратора – звонкие согласные.
Важными факторами для развития речи ребенка являются его полноценный слух и зрение.
Для развития речи ребенка решающее значение имеет полноценный слух. Ребенок слышит речь взрослых, подражает ей и самостоятельно учится говорить. Глухие дети не овладевают речью без специального обучения. У детей с остатками слуха (слабослышащие дети) речь оказывается грубо нарушенной.
Слух человека в процессе своего развития приобрел особое свойство: точно различать звуки человеческой речи. Совсем маленький ребенок воспринимает слова еще нечетко, поэтому часто смешивает одну фонему с другой, произносит слова неправильно. Необходимо постоянно поправлять ребенка, чтобы неправильное произношение не стало привычкой, которую впоследствии будет трудно преодолеть.
Существенное значение в развитии речи детей имеет также зрение. Зрячий ребенок внимательно наблюдает за движениями губ и языка говорящих, повторяет их, стараясь подражать артикуляционным движениям.
В процессе развития ребенка между анализаторами, принимающих участие в речевой деятельности, возникает система условных связей, которая постоянно развивается и укрепляется повторными связями.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *