ветхие тепловые сети определение

Износ и повреждение тепловых сетей. Решение проблемы качества и надежности энергоснабжения

Wear and Damage of Heating Networks. Solving the Problem of Energy Supply Quality and Reliability

A.S. Gorshkov, Candidate of Engineering, Chief Specialist at AO «Gazprom promgaz», P. P. Rymkevich, Candidate of Engineering, Physics Department Professor at FSBHEI HPE «Military Space Academy named after A.F. Mozhayskiy» of the Ministry of Defense of the Russian Federation

Keywords: district heating system, heating, hot water supply, heating networks, pipelines, defects, damages, physical wear, service life of heating networks, heat supply reliability, fail-free operation probability

After definition of the main characteristics of a district heat supply system that ensure its quality and safety (beginning of the article is available in «Energy Saving» magazine No. 4, 2019), we will move on to review of a mathematical model of damage accumulation built on the basis of the analysis of existing models of physical wear of heat networks’ pipelines and equipment, as well as probability of their fault-free operation. The presented models allows for quality description of damage accumulation process in heating networks in the course of their operation.

Определив основные характеристики состояния системы централизованного теплоснабжения, при которых обеспечиваются ее качество и безопасность, перейдем к рассмотрению математической модели накопления повреждений, созданной на основании анализа существующих моделей физического износа трубопроводов и оборудования тепловых сетей, а также вероятности их безотказной работы. Представленная модель позволяет качественно описать процесс накопления повреждений в тепловых сетях по мере их эксплуатации.

Износ и повреждение тепловых сетей. Решение проблемы качества и надежности энергоснабжения

А. С. Горшков, канд. техн. наук, главный специалист АО «Газпром промгаз»

П. П. Рымкевич, доктор техн. наук, профессор кафедры физики ФГБВОУ ВО «Военно-космическая академия им. А. Ф. Можайского» Министерства обороны Российской Федерации

Определив 1 основные характеристики состояния системы централизованного теплоснабжения, при которых обеспечиваются ее качество и безопасность, перейдем к рассмотрению математической модели накопления повреждений, созданной на основании анализа существующих моделей физического износа трубопроводов и оборудования тепловых сетей, а также вероятности их безотказной работы. Представленная модель позволяет качественно описать процесс накопления повреждений в тепловых сетях по мере их эксплуатации.

ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение

Для описания процесса накопления повреждений в теплопроводах тепловых сетей введем следующие начальные допущения:

1. Проектирование тепловых сетей выполнено в соответствии с требованиями действующих нормативных документов (стандартов и сводов правил).

2. Строительство тепловых сетей осуществлено в соответствии с требованиями проектной документации.

3. При поставке на строительную площадку трубопроводы тепловых сетей могут иметь незначительные дефекты и повреждения, которые соответствуют техническим условиям на продукцию, то есть они имеют запас по надежности, но несколько пониженный по сравнению с трубопроводами, которые не имеют в своем составе дефектов и повреждений.

4. При монтаже тепловых сетей были допущены некоторые дефекты, влияние которых на надежность теплоснабжения в начальный момент времени незначительно.

Примечание. Введение допущений 3 и 4 обусловлено тем, что при значительной поставке изделий на строительную площадку, а также при их монтаже невозможно в полной мере обеспечить соответствие поставляемых изделий и производство работ при их монтаже нормативным требованиям. Наличие аварий на начальной стадии эксплуатации тепловых сетей свидетельствует о допустимости подобного утверждения. Последнее означает, что в начальный момент эксплуатации сетей степень их физического износа имеет некоторое отличное от нулевого значение (dнач). В существующих моделях данные допущения, как правило, не используются.

5. По мере эксплуатации тепловых сетей повреждения в результате физического износа накапливаются.

6. Скорость накопления повреждений со временем d’t пропорциональна их количеству dt.

В этом случае модель накопления повреждений в тепловых сетях со временем будет выглядеть следующим образом:

где dt – скорость накопления повреждений;

k – коэффициент накопления повреждений;

dt – количество повреждений.

Решением уравнения (1′) является следующее выражение:

где dt, k – то же, что и в уравнении (1′);

dнач – начальный уровень повреждений, численно равный количеству дефектов (или дефектных участков тепловых сетей), допущенных при монтаже трубопроводов и оборудования;

Значение коэффициента накопления повреждений k зависит от диаметров трубопроводов, толщины слоя изоляции, условий и режимов эксплуатации тепловых сетей и в общем случае может быть установлено на основании анализа данных статистики отказов.

В этой связи введем ряд дополнительных допущений, а именно примем, что:

7. По мере накопления повреждений коэффициент запаса по надежности тепловых сетей уменьшается, а степень их физического износа возрастает.

8. Степень физического износа тепловых сетей пропорциональна количеству повреждений в них.

9. Количество повреждений ограничено некоторым критическим их уровнем dкр, при котором вероятность возникновения аварийной ситуации достигает максимума.

10. При количестве повреждений dкр физический износ достигает максимально допустимого значения, при котором состояние трубопроводов тепловых сетей достигает аварийного уровня.

С учетом принятых допущений модель физического износа тепловых сетей может быть описана уравнением (1) (см. Формулы), решением которого является уравнение (2). После ряда преобразований уравнение (2) можно представить в виде (3).

ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение

Анализ модели накопления повреждений

Уравнение (2) называется логистическим, а описываемая им функция – сигмоидой (рис. 1). Из рис. 1 видно, что рассматриваемая модель накопления количества повреждений близка к асимптотически нормальному распределению. Если вероятность отказов в тепловых сетях (ωi) сопоставить с количеством накопленных в них со временем повреждений (dt), то графики функций, представленные на рис. 2 и 1 (см. синие линии), качественно совпадут. В этой связи рассматриваемая в работе модель может представлять практический интерес.

Модель накопления повреждений, описываемая уравнением (4)

ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение

Анализ уравнения (2) показывает следующие закономерности:

Из анализа уравнения (2) также следует, что при постоянном коэффициенте накопления повреждений k физический износ зависит от начального уровня дефектов в тепловой сети dнач (рис. 2): чем меньше dнач, тем быстрее система достигает критического значения количественной меры накопленных повреждений dкр.

С достаточной степенью достоверности можно считать, что начальный уровень дефектов трубопроводов и оборудования тепловых сетей dнач не превышает 3 %.

Модель накопления повреждений в тепловых сетях в зависимости от начального уровня повреждений dнач при постоянном значении коэффициента k

ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение

На начальном этапе эксплуатации тепловых сетей повреждения могут быть обусловлены дефектами, допущенными при монтаже трубопроводов и оборудования. И чем больше таких дефектов допущено, тем более интенсивный, согласно уравнению (3), будет наблюдаться рост накопления повреждений. Далее к повреждениям, обусловленным дефектами, допущенными при монтаже, будут добавляться повреждения, обусловленные старением, износом и внешними неблагоприятными воздействиями. Со временем незначительные повреждения на локальных участках тепловой сети могут объединяться в группы и становиться более значимыми. На графике накопления дефектов это обстоятельство отражается в виде увеличения угла наклона кривой к оси абсцисс (рис. 1). При достижении критического уровня количества повреждений в сети dкр, характеризующего исчерпание запаса надежности теплопровода, значительно возрастает риск развития аварийной ситуации. При этом развитие аварии является вероятностным событием, так как зависит от множества факторов.

Коэффициент k в рассматриваемой модели характеризует скорость накопления повреждений и зависит от конкретных условий эксплуатации системы без учета влияния маловероятных, критических по величине воздействий, которые во много раз превышают среднестатистические нагрузки на систему (например, обусловленные сейсмическими воздействиями). При неизменном начальном уровне количества повреждений dнач чем выше значение коэффициента k, тем быстрее система достигнет критического значения количества повреждений в системе dкр (рис. 3). Скорость накопления повреждений в тепловой сети зависит от условий эксплуатации теплопроводов (степени агрессивности воды, состояния тепло- и гидроизоляции и прочего). Следовательно, по углу наклона графика можно оценить качество эксплуатации теплопровода

Модель накопления повреждений в тепловых сетях в зависимости от численного значения коэффициента накопления повреждений k при постоянном значении показателя dнач

ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение

Следует отметить, что тепловые сети функционируют в нестационарных условиях. Меняется температура и расход теплоносителя в системе, производятся периодические испытания тепловых сетей. По этой причине износ тепловых сетей в течение календарного года может быть неравномерным. Однако указанная неравномерность при большом сроке эксплуатации будет регулярно повторяться. В этой связи при шаге расчетного временного интервала, равного одному году, воздействия на тепловые сети можно считать практически регулярными.

Своевременное проведение ремонтных работ на аварийных участках тепловой сети может увеличить срок их эффективной эксплуатации. Таким образом, срок службы тепловой сети может быть продлен за счет качественного выбора материалов и конструкций на этапе проектирования, соблюдения требований проектной документации и технологии производства работ на этапе монтажа трубопроводов и организации системы проведения планово-предупредительных ремонтов на этапе эксплуатации тепловых сетей.

Модель, представленная на рис. 1, позволяет оценить текущее состояние тепловых сетей, а при наличии исходных данных и спрогнозировать их остаточный ресурс. Точность прогнозирования остаточного ресурса тепловых сетей в значительной степени зависит от точности принятой модели расчета. При совпадении модельных и фактических показателей физического износа тепловых сетей представленная в работе модель позволит установить более эффективный и экономичный порядок функционирования системы технического обслуживания и ремонта тепловых сетей.

Рассмотренная модель апробирована применительно к строительным конструкциям [1–4] и обнаруживает сходство с данными, полученными при обработке и анализе результатов натурных обследований [5].

Основные причины повреждения трубопроводов и пути их устранения

Основными причинами аварий на теплотрассах являются:

По данным [6] более 90 % аварий на теплотрассах обусловлено коррозией трубопроводов. 20 лет назад в качестве основной причины повреждаемости тепловых сетей рассматривалась наружная коррозия [8–10]. Однако часто при осмотре дефектных участков сетей коррозионные повреждения обнаруживаются также на внутренней их поверхности. Когда дно коррозионной лунки достигает наружной поверхности трубопровода или каверны в сварочном шве, возникает протечка. Подобные повреждения было сложно обнаружить, поэтому они вовремя не устранялись. В то же время при проникновении воды происходило увлажнение и разрушение теплоизоляционного и гидроизоляционного слоев, что способствовало более интенсивному развитию коррозии на наружной поверхности трубы [8]. Именно поэтому большинство причин, которые приводили к аварии, классифицировались по признаку наружной коррозии трубопроводов.

С переходом на прокладку предызолированных трубопроводов с тепловой изоляцией из пенополиуретана (ППУ), наружной оболочкой из полиэтилена низкого давления (ПНД) и системой оперативного дистанционного контроля (ОДК) количество коррозионных повреждений на наружной поверхности трубопроводов сократилось [6, 11]. Коррозия может развиваться не только на линейных участках трубопроводов, но также в местах расположения скользящих опор и на сварных стыках трубопроводов.

В работе [12] отмечено, что ускорению процессов износа тепловых сетей способствуют: несоблюдение технологии монтажа, низкое качество материала трубопроводов и высокое содержание кислорода в сетевой воде. В совокупности это приводит к тому, что старение трубопроводов происходит в 2–3 раза быстрее расчетных сроков.

Развитию коррозии на внутренней поверхности трубопроводов сопутствуют [7]:

Повышение температуры теплоносителя приводит к повышению степени диссоциации слабых электролитов, в результате чего увеличивается скорость химических реакций, в том числе коррозии. При увеличении температуры на 1 К рН воды уменьшается на 0,01. Уменьшение рН воды повышает коррозионную агрессивность воды. Чем выше величина рН, тем ниже уровень растворимости магнетита [13]. Медленнее всего коррозия происходит при рН = 10 [7].

Ассоциация производителей предварительно изолированных труб рекомендует поддерживать рН воды в диапазоне от 9,5 до 10,0 [13]. В соответствии с СП 124.13330 (табл. Е.1) значение pH сетевой для открытых систем теплоснабжения устанавливается в диапазоне 8,5–9,0; закрытых – 8,5–10,5. При этом согласно требованиям стандарта [14] значение рН для открытых систем теплоснабжения должно находиться в диапазоне 8,3–9,0, закрытых – 8,3–9,5. Тем самым в российских нормативных документах обнаруживаются противоречия, а нижний предел оказывается меньше значений, рекомендованных Европейской ассоциацией производителей труб [13].

Избыток оксида углерода в воде по отношению к необходимому его количеству (соответствующему так называемому карбонатному равновесию) называется свободным оксидом углерода. Его присутствие в воде даже при отсутствии кислорода может приводить к возникновению коррозии. При этом скорость коррозия возрастает пропорционально концентрации свободного оксида углерода и может еще более увеличиться в присутствии свободного кислорода [7]. Российские стандарты (СП 124.13330) содержание свободной угольной кислоты не допускают.

Растворенные в воде соли в зависимости от вида и концентрации также играют определенную роль в развитии коррозии: щелочные растворы солей ее замедляют, кислые – увеличивают.

Методический документ [15, п. 6.4] в качестве критерия опасности внутренней коррозии для трубопроводов тепловых сетей вводит понятие агрессивности сетевой воды, которая в зависимости от скорости коррозии индикаторов оценивается в соответствии со шкалой, представленной в таблице.

Таблица
Агрессивность сетевой воды
Скорость коррозии
индикаторов, мм/год
Агрессивность
сетевой воды
0–0,0300Низкая
0,0310–0,0850Допустимая
0,0851–0,2000Высокая
более 0,2000Аварийная

При высокой или аварийной агрессивности сетевой воды необходимо принимать меры для ее уменьшения [15, п. 6.5]: снижать содержание кислорода в сетевой воде, повышать значения рН или вводить ингибитор коррозии.

В соответствии с требованиями СП 124.13330 (пп. 13.4, 13.5) скорость наружной коррозии для стальных труб не должна превышать 0,030 мм/год, скорость внутренней коррозии следует принимать равной 0,085 мм/год.

Таким образом, в российских нормах и методических документах содержатся все необходимые требования и рекомендации, в результате применения которых фактический срок службы труб и деталей трубопроводов централизованного теплоснабжения должен соответствовать заявленным (расчетным) значениям.

СигмОида — это гладкая монотонная возрастающая нелинейная функция, имеющая форму буквы «S», которая часто применяется для «сглаживания» значений некоторой величины. Часто под сигмоидой понимают логистическую функцию.

При скорости внутренней коррозии, не превышающей 0,085 мм/год, и толщине стенки трубопровода 3,5 мм предполагаемый срок службы трубы должен составить не менее 40 лет (0,085 × 40 = 3,4 мм). Однако практика эксплуатации тепловых сетей в России показывает, что в большинстве случаев трубопроводы СЦТ служат меньше заявленного срока службы. Как было указано, «характерное время жизни» трубы в Санкт-Петербурге составляет 10 лет. В результате несоответствия фактических и расчетных сроков службы трубопроводов и оборудования тепловых сетей затраты на проведение ремонтно-восстановительных работ многократно возрастают. При отсутствии необходимого количества средств на перекладку сетей степень их физического износа увеличивается. А при достижении некоторого критического значения физического износа становится возможным их лавинообразный выход из строя, что крайне негативно скажется на качестве теплоснабжения.

Отсюда можно сделать предположение о том, что требуемые параметры сетевой воды обеспечиваются далеко не всегда. Потери сетевой воды в тепловых сетях приводят к существенному увеличению расхода подпиточной воды, и, соответственно, возрастают риски поступления кислорода в систему теплоснабжения.

При низком качестве деаэрации подпиточной воды концентрация кислорода в сетевой воде может оказаться значительно выше нормируемой [16–17]. В работе [18] отмечено, что при значительном увеличении объема подпитки в практике эксплуатации вакуумных деаэраторов имеют место случаи «проскока» кислорода. В справочнике [13] отмечено, что содержание кислорода в подпиточной воде ниже 0,02 мг/л может быть достигнуто только при термической деаэрации обработанной воды. Даже кратковременные «проскоки» кислорода приводят к коррозии металла водогрейных котлов и отводящей магистрали. В этой связи представляется целесообразной установка анализаторов растворенного кислорода.

В России остается много населенных пунктов, в которых подключение потребителей к тепловым сетям осуществляется по зависимой схеме через элеваторный узел с открытой системой горячего водоснабжения (ГВС). Ввиду этого объем подпитки на источниках оказывается значительным. Можно ожидать, что с переходом на закрытые системы теплоснабжения удельное количество отключений на теплопроводах должно сократиться. Качество сетевой воды проще поддерживать при малом и относительно постоянном расходе теплоносителя, так как в этом случае вероятность попадания свободного кислорода значительно сократится.

Чем больше диаметр трубопровода, тем больше толщина его стенки. Отсюда при прочих равных условиях для трубопроводов большего диаметра можно ожидать более длительного срока службы. Данный вывод подтверждается данными статистики отказов в тепловых сетях. В работе [19] показано, что трубопроводы диаметром 100–150 мм подвергаются внутренней коррозии в большей степени, чем трубопроводы диаметром 200 мм и более. При увеличении диаметра более 450 мм количество повреждений тепловых сетей от внешней и внутренней коррозии асимптотически приближается к минимальной величине. Аналогичные данные приведены в схеме теплоснабжения Санкт-Петербурга на период до 2032 года (актуализация на 2018 год): http://gov.spb.ru/gov/otrasl/ingen/shemy-razvitiya-inzhenernoenergeticheskogo-kompleksa/proekt-shemy-do-2032-napravlennyj-v-minenergo/, согласно которой наибольшее относительное количество отказов наблюдается на теплопроводах диаметром 80 мм; по мере увеличения диаметра трубопроводов интенсивность отказов (ед./км•год) убывает. В этой связи для трубопроводов с диаметрами, меньшими 225 мм, целесообразно переходить на предварительно изолированные полимерные трубы с антикислородным барьером, которые по сравнению со стальными трубами в значительно меньшей степени подвержены деструктивным процессам. Это будет способствовать уменьшению количества аварийных отключений на тепловых сетях, однако потребует перехода на пониженные температурные графики регулирования отпуска тепла, что может повлечь за собой необходимость дополнительного утепления зданий, подключенных к ремонтируемым сетям.

Достоинства представленной модели

Представленная модель накопления повреждений в тепловых сетях с уравнением, качественно описывающим динамику роста повреждений в трубопроводах в зависимости от времени эксплуатации, позволяет оценивать остаточный ресурс трубопроводов. Из модели видно, что энергетическая эффективность тепловых сетей зависит не только от величины потерь тепловой энергии в сетях, но и от их долговечности, поскольку энергоресурсы затрачиваются не только на транспортировку теплоносителя потребителю, но и на восстановление и ремонт аварийных участков сети, требующих затрат энергии на производство и доставку новых изделий к аварийному участку сети, а также на утилизацию старых трубопроводов.

От корректности используемой расчетной модели физического износа тепловых сетей зависит точность оценки остаточного их ресурса. Точность прогнозирования остаточного ресурса отдельных участков тепловых сетей позволит более обоснованно организовать планирование ремонтно-восстановительных работ.

ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение

Из описанной модели накопления повреждений вытекает основное следствие: срок службы теплопроводов тем выше, чем меньше их начальный уровень повреждения dнач и коэффициент скорости их накопления k. Следовательно, для уменьшения аварийности тепловых сетей следует применять более качественные материалы, следить за качеством монтажных работ и уменьшить степень агрессивности неблагоприятных воздействий на сети. Первые два мероприятия позволят снизить значение dнач, последнее – уменьшить величину коэффициента k. После перехода на закрытые системы теплоснабжения удельное количество аварийных отключений на тепловых сетях может снизиться.

По графику накопления повреждений, угол наклона которого зависит от численного значения параметра k в модели, возможна оценка качества эксплуатации теплопроводов. В случае ускоренного роста повреждений в тепловых сетях рекомендуется принять неотложные меры по улучшению режимов их эксплуатации.

На существующих сетях целесообразна установка анализаторов растворенного кислорода и осуществление более качественного контроля за состоянием теплотрасс с использованием системы ОДК. При реконструкции аварийных участков теплотрасс с диаметрами до 225 мм целесообразно использовать предварительно изолированные полимерные трубопроводы с антикислородным барьером. Последняя рекомендация может быть реализована только после оптимизации температурных графиков регулирования отпуска тепла.

Источник

Ветхие тепловые сети определение

Дата введения 2013-01-01

Сведения о своде правил

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 124.13330.2011 «СНиП 41-02-2003 Тепловые сети»

Изменение N 1 внесено изготовителем базы данных

Введение

При разработке свода правил использованы нормативные документы, европейские стандарты (EN), разработки ведущих российских и зарубежных компаний, опыт применения действующих норм проектными и эксплуатирующими организациями России.

Работа выполнена: И.Б.Новиков (руководитель работы), A.И.Коротков, д-р техн. наук В.В.Шищенко, О.А.Алаева, Н.Н.Новикова, С.В.Романов, Е.В.Савушкина (ОАО «ВНИПИэнергопром»); канд. техн. наук В.И.Ливчак, А.В.Фишер, М.В.Светлов, канд. техн. наук Б.М.Шойхет, д-р техн. наук Б.М.Румянцев; Е.В.Фомичева; Р.В.Агапов, А.И.Лейтман (ОАО «МТК»).

1 Область применения

1.2 Настоящий свод правил распространяется на тепловые сети (со всеми сопутствующими конструкциями) от выходных запорных задвижек (исключая их) коллекторов источника теплоты или от наружных стен источника теплоты до выходных запорных задвижек (включая их) центральных тепловых пунктов и до входных запорных органов индивидуальных тепловых пунктов (узлов вводов) зданий (секции зданий) и сооружений, транспортирующие горячую воду с температурой до 200 °С и давлением до 2,5 МПа включительно, водяной пар с температурой до 440 °С и давлением до 6,3 МПа включительно, конденсат водяного пара.

1.3 В состав тепловых сетей включены здания и сооружения тепловых сетей: насосные, центральные тепловые пункты, павильоны, камеры, дренажные устройства и т.п.

1.4 В настоящем своде правил рассматриваются системы централизованного теплоснабжения в части их взаимодействия в едином технологическом процессе производства, распределения, транспортирования и потребления теплоты.

1.5 Настоящий свод правил следует соблюдать при проектировании новых и реконструкции, модернизации и техническом перевооружении и капитальном ремонте существующих тепловых сетей (включая сооружения на тепловых сетях).

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 9238-2013 Габариты железнодорожного подвижного состава и приближения строений

ГОСТ 9720-76 Габариты приближения строений и подвижного состава железных дорог колеи 750 мм

ГОСТ 23120-2016 Лестницы маршевые, площадки и ограждения стальные. Технические условия

ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 30732-2006 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана с защитной оболочкой. Технические условия

ГОСТ Р 56227-2014 Трубы и фасонные изделия стальные в пенополимерминеральной изоляции. Технические условия

ГОСТ Р 56730-2015 Трубы полимерные гибкие с тепловой изоляцией для систем теплоснабжения. Общие технические условия

ГОСТ Р 58097-2018 Трубы гибкие полимерные армированные с тепловой изоляцией и соединительные детали к ним для наружных сетей тепло- и водоснабжения. Общие технические условия

СП 12.13130.2009 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности (с изменением N 1)

СП 25.13330.2012 «СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах» (с изменениями N 1, N 2, N 3)

СП 30.13330.2016 «СНиП 2.04.01-85* Внутренний водопровод и канализация зданий» (с изменением N 1)

СП 42.13330.2016 «СНиП 2.07.01-89* Градостроительство. Планировка и застройка городских и сельских поселений»

СП 43.13330.2012 «СНиП 2.09.03-85 Сооружения промышленных предприятий» (с изменениями N 1, N 2)

СП 45.13330.2017 «СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты» (с изменением N 1)

СП 52.13330.2016 «СНиП 23-05-95* Естественное и искусственное освещение»

СП 60.13330.2016 «СНиП 41-01-2003 Отопление, вентиляция и кондиционирование воздуха» (с изменением N 1)

СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов» (с изменением N 1)

СП 70.13330.2012 «СНиП 3.03.01-87* Несущие и ограждающие конструкции» (с изменениями N 1, N 3)

СП 265.1325800.2016 Коллекторы коммуникационные. Правила проектирования и строительства

СанПиН 2.1.4.1074-01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения

СанПиН 2.1.4.2496-09 Гигиенические требования к обеспечению безопасности систем горячего водоснабжения. Изменение к СанПиН 2.1.4.1074-01

СН 2.2.4/2.1.8.562-96 Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки

3 Термины и определения

В настоящем своде правил применены термины по [2], [4], а также следующие термины с соответствующими определениями:

3.1 автоматизированный узел управления; АУУ: Устройство с комплектом оборудования, устанавливаемое в месте подключения системы отопления здания или его части к распределительным тепловым сетям от центрального теплового пункта и позволяющее изменить температурный и гидравлический режимы систем отопления, обеспечить учет и регулирование расхода тепловой энергии.

3.2 вероятность безотказной работы системы [Р]: Способность системы не допускать отказов, приводящих к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже нормативных.

3.3 квартальные тепловые сети: Распределительные тепловые сети внутри кварталов городской застройки.

коммуникационный коллектор: Протяженное проходное подземное сооружение, предназначенное для совместной прокладки и обслуживания инженерных коммуникаций, с внутренними инженерными системами, обеспечивающими его функционирование.

3.5 коэффициент готовности (качества) системы [ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определение]: Вероятность работоспособного состояния системы в произвольный момент времени поддерживать в отапливаемых помещениях расчетную внутреннюю температуру, кроме периодов снижения температуры, допускаемых нормативами.

3.6 магистральные тепловые сети: Тепловые сети (со всеми сопутствующими конструкциями и сооружениями), транспортирующие горячую воду, пар, конденсат водяного пара, от выходной запорной арматуры (исключая ее) источника теплоты до первой запорной арматуры (включая ее) в тепловых пунктах.

3.7 ответвление: Участок тепловой сети, непосредственно присоединяющий тепловой пункт к магистральным тепловым сетям или отдельное здание и сооружение к распределительным тепловым сетям.

3.8 полупроходной канал: Протяженное подземное сооружение с высотой прохода в свету от 1,5 до 1,8 м и шириной прохода между изолированными трубопроводами не менее 600 мм, предназначенное для прокладки тепловых сетей без постоянного присутствия обслуживающего персонала.

3.9 проходной канал: Протяженное подземное сооружение с высотой прохода в свету не менее 1,8 м и шириной прохода между изолированными трубопроводами, равной ветхие тепловые сети определение. Смотреть фото ветхие тепловые сети определение. Смотреть картинку ветхие тепловые сети определение. Картинка про ветхие тепловые сети определение. Фото ветхие тепловые сети определениемм, но не менее 700 мм, предназначенное для прокладки тепловых сетей без постоянного присутствия обслуживающего персонала.

3.10 распределительные тепловые сети: Наружные тепловые сети от тепловых пунктов до зданий, сооружений, в том числе от центрального теплового пункта до индивидуального теплового пункта.

3.11 система централизованного теплоснабжения; СЦТ: Система, состоящая из одного или нескольких источников теплоты, тепловых сетей (независимо от диаметра, числа и протяженности наружных теплопроводов) и потребителей теплоты.

3.12 срок службы тепловых сетей: Период времени в календарных годах со дня ввода в эксплуатацию, по истечении которого следует провести экспертное обследование технического состояния трубопровода в целях определения допустимости, параметров и условий дальнейшей эксплуатации трубопровода или необходимости его демонтажа.

3.13 тепловой пункт: Сооружение с комплектом оборудования, позволяющее изменить температурный и гидравлический режимы теплоносителя, обеспечить учет и регулирование расхода тепловой энергии и теплоносителя.

3.14 тоннель: Протяженное подземное сооружение с высотой прохода в свету не менее 1,8 м, предназначенное для прокладки тепловых сетей, отдельно или совместно с другими сетями инженерно-технического обеспечения.

3.15 транзитная тепловая сеть: Тепловая сеть, проходящая по земельному участку и (или) через здание, но не имеющая ответвлений для присоединения теплопотребляющих установок на таком земельном участке или в здании.

3.16 трубы, бывшие в употреблении: Трубы, демонтированные после первичной (предыдущей) эксплуатации.

3.17 узел ввода: Устройство с комплектом оборудования, позволяющее осуществлять контроль параметров теплоносителя в здании или секции здания или сооружения, а также, при необходимости, осуществлять распределение потоков теплоносителя между потребителями.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *