укажите форму графита высокопрочного чугуна
Формообразование графита чугуна
Однако другие дегазирующие и обессеривающие элементы, например алюминии, повышая поверхностное натяжение чугуна, вовсе не способствует или, как кальций, далёко не всегда способствуют образованию шаровидного графита в чугуне. Таким образом, одного высокого поверхностного натяжения оказывается недостаточно для кристаллизации графита в шаровидной форме. Поэтому Б.С. Мильман, считает необходимым наличие, кроме этого условия, еще и известного переохлаждения.
Оценка поверхностного натяжения как основного энергетического фактора формообразования графита встречается часто. Так, например, Гейленберг, исходя из общего выражения измерения энергии при кристаллизации (I.21) и из того, что удельная поверхность на единицу объема у пластинчатого графита больше, чем у шаровидного, доказывает, что при малых значениях межфазного натяжения термодинамически выгодней образование пластичного графита, а при больших — шаровидного. По произведенным расчетам таким критическим значением межфазного натяжения является 1170 дин/см. Точно также и другие исследователи считают возможным образование шаровидного графита только в случае определенного соотношения в значениях межфазного натяжения между графитом, аустенитом и жидким раствором, а по Л.Л. Кунину для этого необходимо отсутствие смачивания, т. е. краевой угол а — 180°. Ha первый взгляд в полном соответствии с этими положениями находится установленный П.И. Степиным, Н.И. Клочневым, К. В. Горевым и зарубежными исследователями факт образования пластинчатого графита при избытке глобулизирующих элементов, когда поверхностное натяжение снижается («перемодифицирование»), что может быть объяснено адсорбцией магния на всех гранях кристалла. В то же время следует отметить, что теории поверхностного натяжения как определяющего фактора формообразования игнорируют то обстоятельство, что шаровидный графит отличается от пластинчатого не только по форме, но и по текстуре. Кроме того, известно, что сера, понижающая поверхностное натяжение, все же способствует образованию шаровидного графита при термической обработке белого чугуна (при высоком отношении S:Mn). Исследования автора, проведенные совместно с М.П. Симановским, подтвердили, что то же явление наблюдается и в сером чугуне. Интересно также отметить, что А. Витмозер получил чугун с шаровидным графитом путем присадки алюминия и серы. Более того, исследования К.И. Ващенко совместно с А. П. Рудым, а затем и с К.К. Косняку показывают, что максимум поверхностного натяжения (рис. 35, a) соответствует, примерно, 0,01% Mg, при котором графит вовсе не выделяется в шаровидной форме. Хотя по другим исследованиям (кривая 2 па рис. 35, а) максимум поверхностного натяжения соответствует более высокому содержанию магния, они также свидетельствуют о том, что межфазное натяжение нельзя считать определяющим фактором формообразования.
В этом отношении интересен вопрос об идиоморфной форме графита. Известно, что при достаточно высоких температурах и давлениях меняется не только форма роста графита, но и его внутреннее строение, и графит переходит даже в алмазную форму. В обычных же условиях равновесной формой, по-видимому, является пластинчатая, что объясняется его слоистой структурой, отличающейся большой анизотропией. Так, например, расчет величины поверхностного натяжения вдоль и перпендикулярно базисной плоскости решетки графита дал следующие значения: на плоскости параллельной базису — 562 эрг/см2 или дин/см; на плоскости перпендикулярной базису — 4330 эрг/см2 или дин/см, что соответствует коэффициенту анизотропии в 7,7. Это приводит к разным скоростям роста в разных направлениях, в данном случае — к преимущественному росту вдоль базиса и следовательно, к развитию наиболее плотно упакованных плоскостей с наименьшей поверхностной энергией. При этом пластинки первичного графита большей частью разветвлены, что является следствием его дендритообразного роста, обусловленного концентрационным переохлаждением в пограничном слое у фронта кристаллизации вследствие резкого понижения концентрации углерода в жидком расплаве при выделении высокоуглеродистой фазы — графита. Таким образом, в обычных условиях идиоморфной формой графита является, по-видимому, пластинчатая, хотя некоторые исследователи, в частности Д.П. Иванов, придерживаются противоположной точки зрения.
Из всего вышеуказанного следует, что наиболее обоснованными являются гипотезы третьей группы (схемы 3), объясняющие формообразование с точки зрения разных скоростей роста отдельных граней графита, которые определяются как внутренним строением и анизотропностью графита, так и влиянием внешних условий.
Едва ли не самую большую роль в этом отношении играют примеси, незначительные концентрации которых могут резко изменить огранку кристаллов. И действительно, примеси оказывают большое влияние на форму графита: Mg. Ce, Th и др., а в некоторых случаях Ca и даже S (в больших концентрациях) способствуют образованию шаровидного графита; Pb, Bi, Al, Ti, H2 и S (в средних концентрациях), наоборот, благоприятствуют кристаллизации графита в пластинчатой форме; Te и его комбинации с церием способствуют образованию компактного и притом разветвленного графита, напоминающего углерод отжига ковкого чугуна, в особенности при низком содержании С, Si и S. При этом механизм влияния примесей весьма разнообразен: они могут механически внедряться в решетку графита или избирательно адсорбироваться на гранях графита, соответственно изменяя их скорость роста; они могут так же, как показал А.Г. Спасский, отталкиваться к границам растущего кристалла и, образуя своеобразный барьер, тем самым уменьшать скорость роста всего кристалла или колонии в целом. Во всех случаях при этом примеси оказывают различное влияние на скорость роста отдельных граней кристалла, изменяя его форму. Даже при изменении общей скорости роста кристалла, например при образовании барьера, это сказывается прежде всего на той грани, которая растет с наибольшей скоростью; ее скорость постепенно уменьшается и выравнивается со скоростями роста других граней, пока, наконец, лимитирующим фактором не становится диффузия углерода через барьер примесей. В последнем случае форма графита уже определяется только соотношением скоростей доставки атомов углерода с разных сторон, кристаллы становятся аллотриоморфными. Такое действие примесей основано, вероятно, на внедрении в решетку растворителя или адсорбции, в связи с чем происходит изменение межфазного натяжения и скоростей роста граней. Экспериментальным подтверждением этого могут служить исследования распределения глобулизирующих элементов между матрицей и графитом. К сожалению, они весьма противоречивы и обнаруживают то равномерное распределение элементов по объему металла, то преимущественную концентрацию в матрице, карбидах или в графите. Э.П. Рикман, например, нашла:
С другой стороны, Л.Е. Кривошеев и др. обнаружили примерно одинаковое содержание церия в феррите и графите. Можно предположить, что распределение примесей зависит от их концентраций, структуры чугуна и других факторов и поэтому может значительно изменяться. Во всяком случае несомненно, что глобулизирующие элементы, в частности магний, растворяются, хотя и в малой степени, в матрице, как это следует из опытов Ф.Н. Тавадзе и М.А. Эссена, а затем П.И. Стенина, доказавших возможность округления пластинчатого графита при диффузионной обработке твердого чугуна магнием под повышенным давлением. В то же время эти элементы растворяются и в графите, причем превалирует мнение, что они распределяются в графите объемно, располагаясь между его слоями.
Хаким образом, глобулизирующие примеси, находясь в графите, тормозят его рост в направлении базиса и способствуют его росту в перпендикулярном направлении. Сравнивая различные выделения графита (рис. 33), можно думать, что шаровидные включения в общем растут аналогично розеточным с той только разницей, что вследствие большего поперечного или меньшего продольного роста аустенит выклинивается между элементарными кристаллами, вследствие чего он начинает кристаллизоваться по периферии включения, образуя оторочку вокруг графита. Наличие последней приводит к тому, что атомы углерода в дальнейшем поступают только путем диффузии через эту оторочку, вследствие чего кристаллизация графита происходит в шаровидной форме. Этому в значительной мере способствует, кроме примесей, большая скорость охлаждения. И действительно, в ряде случаев, как в Fe—С, так и, особенно, в Ni—C и Co—С сплавах бывает иногда довольно одного переохлаждения без присадки глобулизирующих элементов для получения шаровидного графита. Это дало основание И. Чикелю и другим предложить схемы, представляющие форму графита как функцию переохлаждения, а Витмозеру и Гудремону — трактовать влияние примесей, как перемещение допустимой области переохлаждения. Однако большое переохлаждение вовсе не является всегда обязательным условием получения шаровидного графита. Как видно из рис. 36, переохлаждение и кристаллизация в интервале температур с образованием шаровидного графита наблюдается в Ni—С сплавах только в присутствии Mg. В остальных случаях вне зависимости от формы графита заметного переохлаждения не наблюдается, и кривая охлаждения имеет горизонтальную площадку в периоде кристаллизации. Все это подтверждает положение, что форма графита определяется соотношением скоростей роста граней, а межфазное натяжение, примеси, переохлаждение и сопротивление среды являются только факторами, оказывающими то или иное влияние на эти скорости роста.
ВЧШГ: высокопрочный чугун с шаровидным графитом, понятие, применение
Главная страница » ВЧШГ: высокопрочный чугун с шаровидным графитом, понятие, применение
Чугун со сфероидальным графитом (магниевый чугун) – такое научное наименование часто встречается по отношению к ковкому «пластичному железу», где в матрице графит представлен формами сфероида, глобул или узелков. Очевидно, высокопрочный чугун с шаровидным графитом называют «пластичным железом» по причине исключительно высокой пластичности (показатель удлинения достигает значений 22% и выше).
Особенности ковкого «пластичного железа»
Стремительный рост производства высокопрочного чугуна с шаровидным графитом и высокий показатель расхода металла на практике свидетельствуют о выдающихся механических свойствах продукта.
Благодаря термическим обработкам, подобным аустемперингу (austempering), удаётся ещё более усилить свойства высокопрочного чугуна с шаровидным графитом. Неудивительно, что высокопрочный чугун с шаровидным графитом находит широкое применение в самых разных сферах народного хозяйства.
«Пластичное железо» позволяет изготавливать сложные детали методом литья, которые впоследствии легко обрабатываются до финишного состояния
После появления продукта — высокопрочного чугуна с шаровидным графитом, был заменён целый ряд литейных изделий, ранее производимых из серого чугуна и ковкого чугуна. Один из ярких примеров трансформации производства:
Высокопрочный чугун с шаровидным графитом получают обработкой серого чугуна церием или магнием. Более применяемым из этих компонентов является магний, который практически повсеместно используется для производства «пластичного железа» (ВЧШГ). Использование церия отмечается более ограниченным, так как церий является карбидообразующим элементом (объём карбида превышает 0,01%).
Высокопрочный чугун с шаровидным графитом — история появления
Впервые об успешном производстве структур сфероидального графита в составе серых чугунов сообщила Британская исследовательская ассоциация. Информация появилась в 1948 году, когда проходил ежегодный конгресс Американского литейного общества.
Экспериментально серо-гипертонический чугун с церием добавлялся в виде мишметалла незадолго до начала процесса литья. Чуть позже исследователи Международной никелевой компании США нашли способ получения структуры сфероидального графита в литом состоянии путём введения одной из двух добавок в железо:
Последний вариант оказался коммерчески жизнеспособным и в настоящее время универсально используется для производства высокопрочного чугуна с шаровидным графитом.
Разница структурной составляющей: А – серого чугуна; В – ковкого («пластичного») чугуна; 1 – форма графита серого чугуна; 2 – форма графита ковкого пластичного чугуна
Однако механизм образования графитовых узелков до настоящего момента остаётся предметом серьёзных споров учёных. Различные исследовательские группы выдвигали различные теории, но ни одна из выдвигаемых теорий не получила всеобщего признания.
Как правило, высокопрочный чугун с шаровидным графитом производится путём окомкования серого чугуна. Соответственно, расплав серого железа в первую очередь обессеривается. Десульфурацию требуется проводить неизменно, а рекарбюризацию следует выполнять лишь в случае необходимости.
Когда базовое железо требуемого состава готово, структуру соответствующим образом обрабатывают для сфероидизации. После этого проводят последующие инокуляции, расплав без лишних задержек заливают в формы, чтобы избежать эффекта выцветания.
Серый и высокопрочный чугун с шаровидным графитом — различия
В отличие от этого пластичные чугуны имеют предел прочности на разрыв в диапазоне 350 — 1500 Н/мм 2 с хорошим удлинением и высокой ударной вязкостью. В настоящее время на долю таких продуктов приходится около 25% производства чугунных отливок, заменивших стальное литьё, ковку.
Пластичный чугун обеспечил производство уникальных деталей самого разного назначения, которые ранее производились посредством литья из стали или иным образом
Отсюда следует очевидный вывод: самые высокие механические свойства серого чугуна являются отправной точкой для производства отливок из высокопрочного чугуна с шаровидным графитом.
Выраженные свойства высокопрочного чугуна с шаровидным графитом
Так называемое «пластичное железо» обладает рядом интересных свойств. Эти свойства отмечены ниже:
высокая степень прочности (в некоторых вариациях выше стали),
Как производится «пластичное железо» (ВЧШГ)?
Выбор химической композиции базовых сплавов предпочтителен с целью получения свободной от углерода отлитой структуры. Другие факторы, которые также рассматриваются, это:
На все отмеченные факторы влияет скорость охлаждения.
Присутствие углерода
Содержание углерода в промышленном ковком чугуне составляет 3,0 — 4,0%, но желательны гораздо более узкие пределы диапазона. На количество клубеньков напрямую влияет содержание углерода. Отмечается большее количество сфероидов при более высоком содержании углерода.
Увеличение содержания углерода также увеличивает литейную способность за счёт улучшения текучести и подачи. Уровень содержания углерода должен быть связан с формулой эквивалента углерода:
CE = %C + 1/3 %Si + 1/3 %P
Углеродные эквиваленты значительно превышают параметр 4,3, способствуют развитию и росту графитовых сфероидов. Поскольку графит намного менее плотный, чем расплавленный чугун, эти сфероиды способны становиться плавучими и всплывают к поверхности литья. Такое развитие событий приводит к сильной сегрегации углерода.
Присутствие кремния
Очень сильным активатором, не содержащим карбидов, является кремний. Помимо активации графита и улучшения его распределения, кремний является наиболее мощным полезным элементом для повышения прочности, и до 4% увеличивает пластичность в литом состоянии.
Ассортимент изделий, которые изготовлены на базе пластичного чугуна. Каждая из этих деталей отмечается активным использованием и применением в самых разных конструкциях
Кремний, будучи стабилизатором феррита, увеличивает твёрдость, особенно в отожженном состоянии. Кремний также влияет на распределение графитовых сфероидов. Чем выше содержание кремния, тем больше количество узелков и тем больше содержание феррита.
Однако известно, что более высокое содержание кремния способствует образованию графита массивного типа, что приводит к ухудшению свойств отливок на основе тяжёлого ковкого чугуна. Другими потенциально нежелательными факторами, влияющими на увеличение содержания кремния, являются:
Общий диапазон для коммерческого производства определен в пределах 1,8 — 2,8%.
Присутствие марганца
Единственная цель при выборе процентного содержания марганца – следует избегать в процессе литья образования карбида. Предпочтительно, чтобы такое образование не превышало 0,5%.
Дополнительным преимуществом пониженного содержания марганца является снижение тенденции поглощения водорода и минимизации опасности пробоин. Следует отметить: содержание марганца никогда не следует выбирать с целью контроля структуры матрицы.
Содержание серы
Контроль серы для производства высокопрочного чугуна с шаровидным графитом видится очень важным моментом. Если базовый металл, используемый при производстве высокопрочного чугуна с шаровидным графитом, содержит более 0,015% серы, потребуются увеличивать количества магния или других нодулирующих агентов. Кроме того, появляются проблемы контроля дефектов, возрастает объём окалины. Поэтому в процессе литья оптимальным видится содержание серы в пределах 0,01%.
Содержание фосфора
Фосфор снижает пластичность, ударную вязкость и свариваемость, и эти факторы отрицательно сказывается на прочности литья. По этим причинам большинство спецификаций допускают максимум содержания фосфора — 0,03%. Удачной практикой является сохранение содержания фосфора ниже 0,04%. В некоторых случаях, когда требуются:
содержание фосфора следует поддерживать на более высоком уровне.
Содержание магния
Магний добавляют для нодуляризации, как правило, в легированной форме. Технической литературой предусматривалось содержание остаточного магния в образованном высокопрочном чугуне с шаровидным графитом в пределах 0,02 — 0,06%.
Чугун с шаровидным графитом получают обработкой жидкого (расплавленного) чугуна подходящего состава чистым магнием, непосредственно перед началом процесса литья
Указанный выше диапазон обоснован расчётным количеством легированного магния с учётом факторов, таких как:
Разрушительный элемент и нейтрализация
Одной из целей при производстве ковкого чугуна хорошего качества является получение продукта с тонким распределением хорошо сформированных конкреций внутри структуры.
Процесс с нодулярным графитом способен привести к снижению механических свойств. Причём снижение механических свойств зависит от нонодулярного или чешуйчатого графита стандартов «ISO 945» и «ASTM 247».
Небольшое количество элементов:
по отдельности или в комбинации, разрушают магний, обладающий желаемым модульным эффектом, и поэтому эти элементы часто называют разрушительными или губительными элементами. Эффекты разрушительных элементов накапливаются.
Небольшие количества двух или более разрушительных элементов, присутствующих в количествах, которые по отдельности не имеют значительного эффекта, вместе могут неблагоприятно влиять на образование узлового графита.
увеличиваются в объёмах с увеличением размера литого профиля. По этой причине приемлемые уровни не могут быть указаны.
Влияние использования загрузочных материалов печи, контролирующих подрывные элементы, может быть оценено путём определения влияния на графитовые структуры в испытательном стержне или отливке.
Когда элементы присутствуют индивидуально, возможны губительные (разрушительные) эффекты, если к следующим уровням добавляются:
Влияние губительных элементов можно нейтрализовать добавлением небольшого количества церия (0,002 — 0,005%) в дополнение к магнию. Содержание церия выше примерно 0,01% приведёт к уменьшению количества клубеньков и увеличению риска образования карбидов. Поэтому важно выдерживать указанный процентный диапазон.
Практические способы плавления
Отношение практики плавления к типу и количеству используемого сфероидального сплава имеет большое значение для литья и получения физических свойств. Плавка в вагранке является наиболее распространенным методом плавления ковкого чугуна. Причём в ряде литейных цехов используются электрические индукционные печи.
Химическая плавка в вагранке
Использование химических вагранок (купольных печей) требует строгого контроля над загружаемыми материалами и коксом, поскольку полученный кислотный шлак не способен снизить содержание серы в железе.
Это приводит к содержанию серы в количестве от 0,06 — 0,12%. Если не снизить объём серы, потребуется увеличивать количество сфероидизирующего сплава. Однако плавление в химической вагранке позволяет контролировать легко окисляемые элементы загрузки, такие как хром и марганец.
Поскольку это более окисляемый процесс, чем основной процесс купола. По причине умеренного поглощения углерода при плавлении в вагранке с кислотным основанием и желаемой химии основного чугуна, использование возвращаемого чугуна является ограниченным.
Этим ограничивается строгий контроль состава и высокие температуры металла, однако допускается производство без необходимости горячего дутья.
Традиционная плавка в вагранке
Традиционно используемое плавление в вагранке характеризуется определённым преимуществом контроля серы. Среднее содержание серы в основном расплаве перед сферрадизацией составляет 0,025 — 0,035%. Этот пониженный уровень содержания серы в расплаве достигается за счёт:
Плавление электрическим способом
Электрическое плавление обеспечивает чистый и надежный расплав. Эта методика также обеспечивает наибольшую гибкость для плавильных чугунов различных сортов. Установлено, что электродуговые печи менее популярны, чем индукционные.
Пакетный тип операций и шумовое воздействие электродуговых печей отмечаются факторами, снижающими популярность применения оборудования. Электродуговые печи в основном применяются в качестве первичного расплавителя и в качестве дуплексера.
Электрические индукционные печи являются наиболее распространенными плавильными установками для производства высокопрочного чугуна с шаровидным графитом. Оборудование подобного типа используется как в симплексном режиме в небольших литейных цехах, так и в виде дуплексных установок.
Одна из конструкций электрической индукционной печи, посредством которой выполняется расплавление металла под литьё ВЧШГ
Тип печей без сердечника используется для первичной плавки, а канальная печь используется для дуплексирования. Установлено, что высокочастотные блоки хорошо подходят для работы, с металлургической точки зрения, но эксплуатация такого оборудования связана с высокими затратами.
Однако когда желательны однотонные мощность печи и скорость плавления, высокая частота является предпочтительной. Практически обнаружено: индукционная печь с частотной линией без сердечника является наилучшим оборудованием из всего возможного для выплавки при производстве чугуна. Низкая частота обеспечивает лучшее перемешивание, что приводит к гомогенизации плавления.
Применение высокопрочного чугуна с шаровидным графитом
Последние годы существования промышленного производства отмечаются значительным ростом применения высокопрочного чугуна с шаровидным графитом в процессе изготовления конечных изделий. Об этом свидетельствует постоянно расширяющийся список продуктов, где уже стабильно закрепились:
Заключительный штрих
«Пластичное железо» находит широкое инженерное применение благодаря оптимальному сочетанию литейных и механических свойств. «Пластичное железо» обладает хорошими характеристиками, коррозионной стойкостью, износостойкостью и термостойкостью.
Речь идёт о широко распространённом чугуне, обладающем высокой степенью прочности и хорошей пластичностью. Однако не исключаются проблемы, возникающие из-за более низкой температуры плавления и кипения магния, когда используются различные методы обработки магнием.
При помощи информации: SeminarsOnly