Копирование числа машина тьюринга

Машина Тьюринга (алгоритм)

Во-первых, нужно определиться, где у нас в начальном состоянии стоит головка. Предположим, что она где-то справа от записанных исходных чисел. Если нет, сперва нужно будет написать код, который ее туда переместит.

Потом делаем набросок алгоритма:

1) Найти начало второго (правого) числа
2) Запомнить первую цифру
3) Переместиться вправо на первое свободное место
4) Записать эту цифру в эту позицию
5) Повторить шаги 1-4 для остальных цифр второго числа
6) Сделать что-то похожее на 1-5 для первого (левого) числа только с учетом того, что в п. 3 нужно сперва пропустить копию второго числа, а уж потом искать первую свободную клетку.

Б) Как найти вторую, третью и т. д цифры копируемого числа? Для этого нужно, например, скопированные числа заменять на другой символ. Например, скопированные 1 будем заменять на букву А, 0 на букву B.

Теперь, при движении влево нам нужно пропустить все цифры копии и вернуться к состоянию поиска первой не скопированной цифры второго числа
q70->q70L
q71->q71L
q7_->q0_L

Теперь пишем симметричный код, для копирования 0, начинающийся с q5, только там вместо q6, q7 будут q7, q9

Выполняя эту программу, рано или поздно, программа скопирует второе (правое) число, будет стоять в исходной позиции (на пустой клетке), а все цифры первого числа буду заменена на А и В.

Дальше нужно сделать похожий алгоритм для «левого» числа, только там, во первых, пока ищем начало числа, поменять А и В на 1 и 0. И при поиске начала и копировании не забывать пропустить «правое» число и его копию. Попробуйте дальше сами.

Как-то так, возможно есть вариант проще, но это надо попробовать доделать, а потом подумать, как оптимизировать. Вообще, всегда полезно потренироваться на простых задачах, «набить руку», чтобы сразу замечать похожие действия.

Источник

Копирование числа машина тьюринга

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A= — внешний алфавит, служит для записи исходных данных

Q= — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Каждая ячейка ленты может содержать символ из внешнего алфавита A = (В нашем случае A=<0, 1>)

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = . В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «

Источник

Навигация

Календарь

Машина Тьюринга. Задачи и решения

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A= — внешний алфавит, служит для записи исходных данных

Q= — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Каждая ячейка ленты может содержать символ из внешнего алфавита A = (В нашем случае A=<0, 1>)

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = . В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «

Источник

Машина Тьюринга

Содержание

Машина Тьюринга (англ. Turing machine) — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое — проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе — не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.

Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:

При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.

Определение [ править ]

Определение машины [ править ]

Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга.

Определение процесса работы [ править ]

Особо следует рассмотреть случай переходов по пробельному символу:

Для машины Тьюринга, которая пишет символ [math]B[/math] на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода.

Результат работы [ править ]

Примеры машин-распознавателей и машин-преобразователей будут даны ниже.

Примеры машин Тьюринга [ править ]

Прибавление единицы [ править ]

Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий:

[math]0[/math][math]1[/math][math]B[/math]
[math]S[/math][math]\langle R, 1, \downarrow \rangle[/math][math]\langle S, 0, \rightarrow \rangle[/math][math]\langle R, B, \leftarrow \rangle[/math]
[math]R[/math][math]\langle R, 0, \leftarrow \rangle[/math][math]\langle R, 1, \leftarrow \rangle[/math][math]\langle Y, B, \rightarrow \rangle[/math]

Проверка того, является ли слово палиндромом [ править ]

[math]0[/math][math]1[/math][math]B[/math]
[math]S[/math][math]\langle F_0, B, \rightarrow \rangle[/math][math]\langle F_1, B, \rightarrow \rangle[/math][math]\langle Y, B, \downarrow \rangle[/math]
[math]F_0[/math][math]\langle F_0, 0, \rightarrow \rangle[/math][math]\langle F_0, 1, \rightarrow \rangle[/math][math]\langle B_0, B, \leftarrow \rangle[/math]
[math]F_1[/math][math]\langle F_1, 0, \rightarrow \rangle[/math][math]\langle F_1, 1, \rightarrow \rangle[/math][math]\langle B_1, B, \leftarrow \rangle[/math]
[math]B_0[/math][math]\langle R, B, \leftarrow \rangle[/math][math]\langle N, 1, \downarrow \rangle[/math][math]\langle Y, B, \downarrow \rangle[/math]
[math]B_1[/math][math]\langle N, 0, \downarrow \rangle[/math][math]\langle R, B, \leftarrow \rangle[/math][math]\langle Y, B, \downarrow \rangle[/math]
[math]R[/math][math]\langle R, 0, \leftarrow \rangle[/math][math]\langle R, 1, \leftarrow \rangle[/math][math]\langle S, B, \rightarrow \rangle[/math]

Варианты машины Тьюринга [ править ]

В этом разделе приведены различные варианты машин Тьюринга, которые не отличаются от обычных машин Тьюринга по вычислительной мощности.

Многодорожечная машина Тьюринга [ править ]

Машина Тьюринга с полубесконечной лентой [ править ]

Заменив у машины Тьюринга бесконечную в обе стороны ленту на бесконечную в одну сторону, мы не теряем в вычислительной мощности. По произвольной машине Тьюринга строится двухдорожечная машина с полубесконечной лентой.

Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с бесконечной лентой следующим образом:

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Затем перенумеруем ячейки, и запишем символ [math]c \in \Pi \setminus \Sigma, B[/math] в начало ленты, который будет означать границу рабочей зоны:

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Начальное состояние новой машины Тьюринга устанавливается в одной или другой зоне в зависимости от того, в какой части исходной ленты располагалась головка считывания-записи в исходной конфигурации.[math]\triangleleft[/math]

Многоленточная машина Тьюринга [ править ]

Многоленточная машина с [math]n[/math] дорожками эмулируется многодорожечной машиной с [math]2n[/math] дорожками следующим образом: каждая нечётная дорожка соответствует ленте исходной машины, а на каждой чётной дорожке отмечены специальным символом [math]*[/math] позиция головки на ленте выше (считаем, что ленты нумеруются сверху вниз).

Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов [math]*[/math] символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.

Аланом Тьюрингом было сформулировано следующее утверждение:

Иными словами, тезис говорит о том, что любой алгоритм можно запрограммировать на машине Тьюринга.

Универсальная машина Тьюринга [ править ]

Существует машина Тьюринга, которая принимает на вход закодированное описание произвольной машины и входную строку и эмулирует работу закодированной машины на заданном входном слове. Иными словами, универсальный язык перечислим с помощью машины Тьюринга. Ссылки на явные конструкции универсальных машин Тьюринга приведены ниже.

Источник

Алгоритмы: машины Тьюринга

Основные определения

Рассматриваемая в этом разделе модель алгоритмов была предложена английским математиком Тьюрингом в 1937 г. еще до создания современных компьютеров 1 Аналогичная модель вычислений была примерно в то же время определена Е. Постом. Поэтому иногда такие машины называют машинами Тьюринга-Поста Он исходил из общей идеи моделирования работы вычислителя, оперирующего в соответствии с некоторым строгим предписанием. В машине Тьюринга расчленение процесса вычисления на элементарные шаги доведено в известном смысле до предела. Элементарным действием является замена одного символа в ячейке на другой и перемещение к соседней ячейке. При таком подходе процесс вычисления значительно удлиняется, но зато логическая структура процесса сильно упрощается и приобретает удобный для теоретического исследования вид.

включающая следующие компоненты:

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга

Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюрингазадает сдвиг головки вправо, влево или на месте;

Будем говорить, что некоторый символ стирается, если он заменяется на пустой. Два слова из Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюрингабудем считать равными, если они совпадают после отбрасывания всех пустых символов слева и справа. Например, Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга, но Копирование числа машина тьюринга. Смотреть фото Копирование числа машина тьюринга. Смотреть картинку Копирование числа машина тьюринга. Картинка про Копирование числа машина тьюринга. Фото Копирование числа машина тьюринга.

Аналогичное определение можно дать и для других спосбов кодирования чисел (двоичного, десятичного и др.). Ниже мы покажем, что класс вычислимых функций не зависит от выбора одного из таких кодирований.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Утверждение (Тезис Чёрча-Тьюринга):