Как сдвигаются графики функций
Преобразования графиков тригонометрических функций
Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.
п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX
Общие принципы растяжения и сжатия графиков по оси OX:
Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом 2π, тангенс и котангенс – с периодом π. Получаем следствие общих принципов:
п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY
Общие принципы растяжения и сжатия графиков по оси OY:
Общий принцип сжатия графиков:
Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:
п.3. Параллельный перенос графиков тригонометрических функций по оси OX
Общие принципы переноса по оси OX:
Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций \(y_1=f(x)\) и \(y_2=f(x\pm a)\) говорят, что у второй функции сдвиг по фазе равен \(\pm a\).
п.4. Параллельный перенос графиков тригонометрических функций по оси OY
Общие принципы переноса по оси OY:
Эти принципы справедливы и для тригонометрических функций.
п.5. Общее уравнение синусоиды
График \(y(x)=Acos(cx+d)+B\) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.
Построим график \(g(x)=3sin\left(2x+\frac\pi2\right)-1\)
По сравнению с \(f(x)=sinx\):
п.6. Общее уравнение тангенцоиды
График \(y(x)=Actg(cx+d)+B\) также называют тангенцоидой.
Построим график \(g(x)=\frac12 tg\left(\frac
По сравнению с \(f(x)=tgx\):
п.7. Примеры
Пример 2. Найдите наименьшие положительные периоды функций:
a) \(y=sin5x\)
Период синуса \(2\pi\) уменьшается в 5 раз. Получаем: \(T=\frac<2\pi><5>\)
б) \(y=cos\pi x\)
Период косинуса \(2\pi\) уменьшается в \(\pi\) раз. Получаем: \(T=\frac<2\pi><\pi>=2\)
в) \(y=tg\frac
Период тангенса \(\pi\) увеличивается в 4 раза. Получаем: \(T=4\pi\)
г) \(y=tg\left(2x+\frac<\pi><3>\right)\)
Период тангенса \(\pi\) уменьшается в 2 раза. Получаем: \(T=\frac\pi2\)
Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) \(sinx=sin2x\) при \(0\leq x\leq 3\pi\)
Ответ: 7 корней
б) \(cos\frac
Ответ: 7 корней
Преобразование графиков функций
В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.
Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.
Начнем со сдвигов графиков по Х и по Y.
Сдвиг по горизонтали.
Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.
1. Сдвиг по вертикали.
Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.
Теперь растяжение графика. Или сжатие.
2. Растяжение (сжатие) по горизонтали.
3. Растяжение (сжатие) по вертикали
И отражение по горизонтали.
4. Отражение по горизонтали
График функции симметричен графику функции относительно оси Y.
5. Отражение по вертикали.
График функции симметричен графику функции относительно оси Х.
Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.
6. Графики функций и
На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.
Построим график функции
Конечно же, мы пользуемся определением модуля.
Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.
Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.
Вот самые простые задачи на преобразование графиков.
1. Построим график функции
Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.
2. Построим график функции
Выделим полный квадрат в формуле.
Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка
Преобразования графиков функций с примерами решения и образцами выполнения
Параллельный перенос, сжатие и растяжение графиков. Построение графиков с модулями.
Графики многих функций можно получить из ранее рассмотренных с помощью элементарных геометрических преобразований: параллельного переноса, сжатия, растяжения, симметричного отображения. Рассмотрим некоторые из этих преобразований. Для каждого из элементарных преобразований предлагается два способа построения графика: с помощью преобразования графика и с помощью преобразования системы координат. Обучающийся должен выбрать тот, который кажется ему проще и овладеть им. В каждом случае считается известным график функции у = f(х).
Параллельный перенос графиков
График функции у = /(x) + Ь получается из графика функции у = f(х) с помощью его переноса на вектор b = (0; b). Действительно, в этом случае ко всем ординатам графика у = f(х) прибавляется величина b, что означает сдвиг графика вдоль оси Оу. Если b > 0, то график функции у = f(х) переносится вверх параллельно оси Oy на b, если b 0 — вниз, если b Рис. 49. Построение графика функции у = f(x) + b
Пример:
График функции у = x² — 1 (рис. 50) смещен на 1 вниз параллельно оси Oy относительно графика функции у = х².
Рис. 50. Построение графика функции у = x² — 1
График функции у = f(x+a) получается с помощью переноса графика функции у = f(x) на вектор а = (—а;0). Действительно, перейдя к новым координатам X = х + α, Y = у параллельным переносом вдоль оси Ox на —а, заметим, что относительно новых координат получится исходный график функции Y = f(X). Если а > 0, то старые координаты получаются из новых сдвигом направо вдоль оси Ox на α, т.к. х = X — а. Если же сдвигать график, а не систему координат, то его нужно двигать в противоположном направлении — налево. Итак, если а > 0, то график функции у = f(x) переносится налево параллельно оси Ox на а, если а 0 — вправо, если α Рис. 51. Построение графика функции у = f(x + а)
Рис. 52. Построение графика функции у = (х — 2)²
Сжатие и растяжение графиков
График функции у = kf(x), где к ∈ R, получается с помощью ’’растяжения” графика функции у = f(x) в к раз в направлении от оси Ох. ’’Растяжение” здесь понимается как умножение на к ординат всех точек графика у = f(x)∙ При k > 1 это будет действительно растяжение в к раз от оси Ox вдоль оси Оу. При 0 0 можно исправить значения по оси Оу, умножив их на k. При k Рис. 53. Построение графика функции у = — 3 sin х
При k > 1 график функции у = f(x) сжимается в k раз к оси Oy вдоль оси Ох; при 0 0 можно исправить значения по оси Ох, поделив их на k. При k Рис. 54. Построение трафика функции у = ln(-х)
Пользуясь изложенными методами, приведем последовательность преобразований при построении графика функции у = f(kx + b), если дан график функции у = f(x):
Пример:
Написать последовательность преобразований и построить график функции у = .
Решение:
Построение графика показано на рис. 55
Замечание:
Теперь понятно, что если функция у = f(x) периодическая с периодом Т, то функция у = К ∙ f(kx + b) + а тоже периодическая с периодом T₁ = . (п. 3.5 лекции 3). Действительно, график последней функции получается из исходного сдвигом вдоль оси Ох, что не меняет период, последующим “сжатием“ вдоль оси Ох, что “уменьшает» период в |k| раз (период T делится на |k|), и окончательным умножением всех ординат на К с последующим прибавлением а, что также не изменяет получившийся период T₁ =
Построение графиков с модулями
График функции у = ∣f(x)∣ получается из графика функции у = f(x) следующим образом (рис. 56)
Действительно, по определению модуля действительного числа имеем:
(5.1)
Таким образом, те участки исходного графика, которые лежат не ниже оси Ox (f(x) ≥ 0), менять не нужно, а для тех участков, которые лежат ниже оси Ох, нужно построить функцию у = —f(x). В соответствии с п. 5.2 это получается симметричным отображением исходного графика относительно оси Ох. Заметим, что полученный график лежит не ниже оси Ох, что естественно, т.к. |f(x)| ≥ 0 для ∀x ∈ D(f).
Рис. 55. Построение графика функции у =
Рис. 56. Построение графика функции у = |f(x)|
Пример:
Построение графика функции у = |х² — 1| показано на рис. 57.
График функции у = f (|x|) получается из графика функции у = f(х) следующим образом (рис. 58):
Действительно, по определению модуля действительного числа имеем:
(5.2)
Рис. 57. Построение графика функции у = |x² — 1|
Таким образом, не нужно изменять те участки исходного графика, для которых х ≥ 0, а для х Рис. 58. Построение графика функции у = f(|x|)
Пример:
Построение графика функции у = (|x| — 2)² показано на рис. 59
Элементарными методами можно строить эскизы графиков более сложных функций.
Пример:
Построить эскиз графика у =
Решение:
Построение графика показано на рис. 60. Заметим, что график отсутствует там, где sin х Рис. 59. Построение графика функции у = (∣x∣ — 2)²
Кроме того, так как √u > и при 0 Рис. 60. Построение графика функции у = √sinx
Построение графиков функций с примерами
Пример:
C помощью элементарных преобразований постройте график функции: у = x² — х — 2.
Решение:
Выделим полный квадрат из правой части уравнения функции: у = x² — х — 2 ⇔ y = x²-x+ ⇔ у =
. График этой функции получается следующей последовательностью элементарных преобразований (рис. 61):
1) y =x²
2) у =. Сдвиг вправо вдоль Ox на
.
3) у = . Сдвиг вниз вдоль Oy на
.
Рис. 61. Построение графика функции у = x² — х — 2
Пример:
Используя сложение, деление функций, постройте график функции: у = х + .
Решение:
В одних осях координат нарисуем графики следующих функций (рис. 62):
1) у = х,
2) y=,
3) y = x + .
Рис. 62. Построение графика функции у = х +
Пример:
Постройте график сложной функции у = sin² х.
Решение:
В одних осях координат нарисуем графики функций:
1) y = sin x,
2) y = sin² х.
Учитывая, что квадрат числа меньшего единицы, меньше исходного числа, получим график (рис. 63)
Рис. 63. Построение графика функции у = sin² х
Пример:
Постройте график функции в полярной системе координат: r = (прямая линия).
Решение:
Вычислим значения г для некоторых значений ∈ (0; π) — см. таблицу.
0 | |||||
r | ∞ | 2 | ∞ |
Рис. 64. График функции r =
Соединив плавной линией найденные точки, получим линию вдоль оси Ох, проходящую через точку (0;1). Докажем что эта линия — прямая (рис. 64). Действительно: из Δ ОAВ ⇒ cos =
=
⇒ r =
.
Пример:
Постройте линию, описываемую уравнением, у =
Решение:
Сначала построим график функции у = (рис. 65). Затем, пользуясь определением |x| (2.1), строим график (рис. 66) функции у =
Наконец, строим линию описываемую уравнением у = (рис. 67):
Рис. 65. График функции у =
Рис. 66. График функции у =
Рис. 67. График функции у =
Пример:
Постройте линию, описываемую уравнением у =
Решение:
Для построения графика данного примера сначала постройте график функции у =. Затем, в соответствии с определением |х|, сотрите ту часть графика, которая расположена слева от оси Оу, а оставшуюся справа часть, отразите симметрично оси Оу.
Рис. 68. График функции у =
Пример:
Решение:
Для построения графика данного примера сначала постройте график функции у = х² — х — 2. Затем отразите симметрично оси Ox ту часть графика, которая осталась снизу от оси Ох. Затем сотрите ту часть графика, которая расположена в нижней полуплоскости.
Рис. 69. График функции у = |х² — х — 2|
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Презентация к уроку
Образовательная: исследовать смещение графика квадратичной функции, определить положение графика в зависимости от значений коэффициентов b, c.
Воспитательная: умение работать в группе, организованности.
Развивающая: навыки исследовательской работы, умение выдвигать гипотезы, анализировать полученные результаты, систематизировать полученные данные.
Ход урока
1. Организационный момент.
Для выполнения задания необходимо разделиться на группы (4 группы по 5 человек, одна группа “эксперты” наиболее подготовленные ученики).
2. Исследовательская работа.
“Экспертная” группа сверяет результаты свои с результатами остальных групп, систематизирует и обобщает результаты, выступает с выводами. В случае неточностей или ошибок учитель вносит коррекционные замечания.
Сверка полученных результатов со слайдами №2-5.
Любую квадратичную функцию y=ax 2 +bx+c, можно записать в виде y=a(x-x0) 2 +y0, где x0 и y0 выражаются через коэффициенты a, b, c. Таким образом, ваши коэффициенты b=x0, c=y0 являются координатами вершины параболы.
3. Закрепление изученного материала.
Фронтальная работа с классом.
1. Найти ошибку в графиках функций (Слайды№6-9).
Какой коэффициент вам помог найти ошибку?
2. Соотнесите графики функций согласно цветам (слайд №10).
4. Рефлексия.
Группа “Экспертов” отвечают на вопросы:
– Какие ошибки допустили группы?
– Достигнута ли цель занятия?
– Соответствуют ли полученные результаты исследования поставленной гипотезе?
5. Итог урока (слайд №11):
На положение графика функции y=(x-b) 2 +c влияют коэффициенты b и c,
“+b” парабола сдвинута вправо по оси абсцисс на b единичных отрезков,
“–b” парабола сдвинута влево по оси абсцисс на b единичных отрезков,
“+с” парабола сдвинута вверх по оси ординат на с единичных отрезков,
“-с” парабола сдвинута вниз по оси ординат на с единичных отрезков.