Как сделать галаграмную картинку
Как сделать голограмму в домашних условиях
Изготовить конструкцию, которая будет показывать объёмное изображение, очень просто даже в домашних условиях. Для этого потребуется смартфон, кусок прозрачного пластика, несколько инструментов и аккуратность.
Что нужно для изготовления голограммы:
Начертите на бумаге трапецию со сторонами 1 см вверху 3,6 см по бокам и 6 см внизу. Если вы используете планшет, можно увеличить габариты в несколько раз.
Возьмите прозрачную пластиковую коробку от диска или стекло, обведите четыре трапеции одинаковой формы по созданной ранее выкройке и вырежьте их ножом и скальпелем. В случае со стеклом нужно использовать стеклорез и быть предельно осторожным, чтобы не порезать пальцы. По желанию зашкурьте края, чтобы они не были острыми и плотно прилегали друг к другу.
Составьте из вырезанных трапеций пирамиду и скрепите грани клеем, скотчем или изолентой. Для большей эстетики лучше использовать прозрачный крепёж, но для экперимента подойдёт любой.
Установите специальное приложение, предназначенное для воспроизведения голограмм. Их можно найти в Google Play и App Store по поисковому запросу «голограмма». Запустите приложение и положите пирамиду на экран.
Для лучшего эффекта голограммы следует просматривать в темноте, так они выглядят просто потрясающе. Если увеличить размер пирамиды и использовать устройство с экраном большего размера (например, планшет, ноутбук, монитор или даже телевизор), голограмма будет ещё больше и красивее.
Как я собирал голограмму
Решил собрать голограмму своими руками, но в итоге вместо картинки я получил разочарование. Стоило ли вообще в это лезть?
И всё же, если вы надумайте собрать дома голограмму, то далее я опишу какие ошибки я допустил, чтобы вы уж точно их не допустили.
Маленькое уточнение!
Голограмма — объёмное изображение, полученное голографическим методом, именно так написано в толковом словаре Ожегова. В современном толковом словаре русского языка Т.Ф. Ефремовой говорится, что голограмма — это объемное изображение предмета на фотопластинке, полученное методом голографии. Выходит, голограмма это нечто «плоское», но имитирующая объём.
К чему я это? А к тому, что сегодня в этой сфере огромная путаница с терминами! Сегодня многообразие объёмных и аэрозольных дисплеев, различного рода проекций обычно называют голограммами для того чтобы обыватели быстро вникали о чём пойдёт речь. Поэтому когда в новостях говорят про то, как голограмма известного человека появилась на сцене, то обычно, речь идёт о самой банальной проекции.
Бывают более продвинутые проекции, это уже аэрозольные экраны.
Речь в статье пойдёт об объёмных дисплеях, которые могут показывать объёмную картинку со всех ракурсов. Объёмные дисплеи условно делят на 2 типа:
Static volume — в этих устройствах нет макроскопических подвижных деталей (экранов или зеркал) Классическим примером являются светодиодные кубы, когда в каждой точке пространства вокселем является светодиод. В настоящий момент такие кубы распространяются как игрушки.
Swept volume – тип дисплеев с подвижным экраном, который работает за счёт персистенции. Такой тип я и пытался собрать.
Принцип работы
Персистенция, она же инерция зрения — это способность глаза, соединять быстро сменяющиеся изображения в одно — неподвижное. Представьте себе 2 картинки. Если они будут быстро сменять друг друга, то они сольются в одну. Наглядный пример это тауматроп:
Подвижные экраны подобных объёмных дисплеев могут быть прямоугольными, дискообразными или с винтовым поперечным сечением. Главное, экран должен двигаться так быстро, что куча статичных картинок сливаются в одну объёмную.
Создание
Самый доступный для меня вид подвижного экрана – вращающийся. Для этого разобрался старый вентилятор.
Поначалу экран был тяжёлый и большой. Но затем делал всё меньше и меньше, ибо двигатель вентилятора был очень слабым. А одно из главных условий – быстрая скорость, поэтому, не рекомендую двигатель от вентилятора. В итоге экран сделал из прочной согнутой шпильки, на которую натянул полупрозрачный материал из старой занавески. Такой материал хорошо просвечивается и продувается, не создавая лишнее давление при вращении.
Когда я начал проецировать тестовые картинки, то я увидел радугу.
Дело в том, что уcтройство DLP проектора с одной матрицей основано на использовании вращающегося диска, выполняющего роль светофильтра. Он размещен между лампой и матрицей и поделен на три равных сектора: красного, синего и зеленого цветов. Проходя через окрашенный сектор, свет попадает на матрицу, отражается от микрозеркал, проходит через объектив и формирует на экране изображение соответствующего цвета. Затем свет проходит через следующий сектор фильтра и т. д. Изображение на экране воспринимается цветным за счет эффекта инерции зрения (персистенция). Если цвет изображения обновляется менее чем за 30 мс, человеческий глаз воспринимает его как равномерно окрашенное. Теперь мне стало понятнее почему рабочие образцы дисплеев так бедны на цвета.
Далее отказался от двух цветов RGB, начал проецировать и тут мои полномочия всё.
Одно из условий – на каждый момент вращения, должна быть своя картинка. Но проецирование сбоку на вращающийся экран не даст стабильную картинку, потому что видеомаппинг на быстродвижущиеся объекты это очень сложно.
Тогда я добавил зеркало, которое тоже вращалось бы с экраном, но уже с меньшей скоростью. По задумке, мне нужно было проецировать статичную развертку, которое бы маленькое зеркало во время движения собирало бы в целую картинку. На деле же, подвижность зеркала растягивала картинку, делая проекцию искаженной.
Затем я попробовал сделать развёртку мерцающей, но из-за несовпадения частоты вращения и мерцанием, картинка всегда проецировалась в разных местах:
Тогда я взял лист бумаги, поднёс его к вращающемуся экрану и записал количество ударов по нему во время вращения. Каждый щелчок это пик на аудиозаписи. Каждый щелчок, это один оборот. Затащил в программу для видеомонтажа и сделал мерцание сответственно оборотам. На деле же, сделать штык в штык не получилось. В итоге никакой разницы. Далее я пошёл на крайний шаг. Залепил зеркало бумагой, оставив тонкую полоску.
В теории, такая проекция должна была создать цилиндр. На деле из-за слишком яркой развертки для зеркала, светом заливалось так много площади, что разглядеть что либо давалось с трудом. Второе, из низкой частоты мерцания проектора, вместо цилиндра были маленькие полоски.
Одной из главных ошибок было проецировать всю развёртку. На деле надо было половину окружности, ибо из-за прозрачности экрана изображение повторялось. Но в итоге получить нормальную стабильную картинку не получилось. Весь эксперимент в дальнейшем хочу записать в виде видео. Поэтому если я где-то что упустил и есть ещё идеи как проецировать на экран, то буду рад любым ответам в комментариях…
Как сделать мини 3D голограмму с помощью смартфона
Если вы думаете, что оптические иллюзии способны вытворять только профессиональные художники-графики, то вы ошибаетесь. Создать объемное 3D изображение, которое будет «парить» в воздухе — под силу каждому.
В сегодняшней статье мы подробно расскажем, как сделать голограмму прямо у себя дома, без использования дорогостоящего оборудования.
Все, что потребуется для реализации задумки — чтобы у вас под рукой был смартфон или планшет.
Экран цифрового гаджета будет выступать в качестве «генератора» изображения, а самодельное устройство (проектор) поможет сделать картинку объемной и «живой».
Чтобы визуальный эффект от просмотра голограммы был более интересным – желательно использовать вращающуюся подставку.
Обратите внимание: в домашних условиях вы можете не только просматривать 3D картинки, но также смотреть видео. Только для этого необходимо, чтобы выбранный вами клип воспроизводился одновременно в четырех проекциях.
Впрочем, сделать это несложно. Обработка видеоролика для его последующего просмотра на самодельном голографическом проигрывателе возможна практически в любом видеоредакторе для ПК.
Как сделать 3D голограмму в домашних условиях
Рассмотрим самый простой и доступный вариант самодельного устройства для просмотра голограммы на телефоне. Лучше всего, если это будет именно смартфон — с большим сенсорным экраном.
В принципе, можно использовать и планшет. Однако в этом случае самодельное устройство придется сделать побольше.
Теперь давайте изготовим само устройство. Для этого необходимо вырезать из бумаги четыре шаблона одинакового размера.
Потом переносим шаблоны на прозрачный пластик — например, на коробочку от компакт-диска. Далее аккуратно вырезаем заготовки из пластика с помощью канцелярского ножа.
Если под рукой нет коробки от CD-диска, можно использовать плексиглас или же обычную пластиковую бутылку.
После того как вырезали все четыре заготовки, необходимо будет соединить их между собой. Для этого можно использовать скотч или суперклей.
Ну а дальше, как говорится, — дело техники. На смартфоне воспроизводим специальное видео с картинками или клипом (их без проблем можно найти на YouTube), и устанавливаем на экран собранное устройство. Выключаем свет в комнате, и наслаждаемся красочным зрелищем.
Подробно о том, как сделать голограмму своими руками, можно посмотреть на видео ниже. Идеей поделился автор YouTube канала BuzzingFish.
Материалы и размеры
Для изготовления голографического мини проигрывателя нам понадобятся:
Чтобы сделать голограмму своими руками на телефоне, надо будет сделать пирамидку, основание которой равно 6 см, а верхняя часть — 1 см. Высота от основания фигуры до верха — 3,5 см. Для лучшего понимания рекомендуем изучить чертеж.
Для проигрывания голограммы на планшете необходимо сделать устройство побольше. Для этого надо всего лишь умножить все исходные данные на 2.
Таким образом, у нас должна получиться пирамидка, основание которой равно 12 см, а верхняя часть — 2 см. Высота от основания до верха — 7 см.
Возможны и другие варианты. Например, можно сделать пирамидку с основанием 9 см и верхней частью — 1,5 см. Высота фигуры — 5,5 см. Размеры можно посмотреть на фото ниже.
Вообще, размеры могут быть любыми, однако нужно, чтобы грань пирамидки находилась под углом 45 градусов по отношению к экрану смартфона или другого цифрового устройства.
Если это условие не будет соблюдено, то голограмма может оказаться либо слишком низко, либо выйти за пределы верхней части устройства.
Зачем нужна смола
Используя пластик (не важно — плексиглас или обычную ПЭТ бутылку) не всегда получается создавать качественные голограммы. Если вы хотите получить максимально реалистичную картинку, рекомендуем использовать эпоксидную смолу.
Форму для заливки эпоксидки будет делаться по тому же принципу, что и готовая пирамидка.
То есть сначала вырезаем из прозрачного пластика четыре заготовки, потом склеиваем их между собой. Только в данном случае вместо суперклея желательно использовать термоклей.
После того как сделали «опалубку», смешиваем эпоксидную смолу с отвердителем (пропорции указаны в инструкции), и заливаем внутрь формы. Даем затвердеть, и разбираем форму.
В результате у нас получится монолитная пирамидка из эпоксидки, которая при воспроизведении 3D голограммы обеспечит более четкую и качественную картинку. Но и затраты на изготовление такого устройства будут больше.
Создание проектора 3D-голограммы
При желании можно изготовить другой вариант самодельного мини проигрывателя 3D голограммы для телефона.
Для его изготовления потребуется коробочка от компакт-диска (или плексиглас), а также две дощечки из дерева или фанеры.
Процесс сборки голографического проигрывателя еще проще, чем изготовление пирамидки.
Для этого берем прозрачную часть коробки от CD-диска, и просто приклеиваем ее с помощью термоклея или другого клея между двумя дощечками.
После этого находим в интернете подходящее изображение в формате GIF. Скачиваем и воспроизводим найденный файл на смартфоне, в сам телефон укладываем сверху дощечек. И опять же — не забываем выключить свет в помещении.
Подробно о том, как создать голограмму с помощью самодельного проектора, можно посмотреть на видео ниже.
Что такое голограмма и как ее сделать?
Свет – это удивительная форма энергии, которая проносится через наш мир с невероятной скоростью: 300 000 километров в секунду — этого достаточно, чтобы пролететь от Солнца до Земли всего за 8 минут. Мы видим мир вокруг, потому что наши глаза являются сложными детекторами света: они постоянно улавливают световые лучи, отражающиеся от близлежащих объектов, в результате чего мозг может создавать постоянно меняющуюся картину об окружающем мире. Единственная проблема заключается в том, что мозг не способен вести постоянную запись того, что видят глаза. Мы можем вспомнить то, что, как нам казалось, мы видели, и распознать образы, которые мы видели в прошлом, но мы не можем легко воссоздать образы неповрежденными, как только они исчезли из поля зрения.
Существует гипотеза, согласно которой наша Вселенная – самая настоящая голограмма
Можно ли сохранить луч света?
Сколько голограмм в вашем кошельке? Если у вас есть какие-то деньги, ответ, вероятно, будет: «довольно много.» Голограммы – это блестящие металлические узоры с призрачными изображениями внутри банкнот, которые помогают бороться с фальшивомонетчиками, так как их очень трудно воспроизвести. На кредитных картах тоже есть голограммы. Но для чего еще можно использовать голограммы?
Еще в 19 веке гениальные изобретатели помогли решить эту проблему, открыв способ захвата и хранения изображений на химически обработанной бумаге. Фотография, как известно, произвела революцию в том, как мы видим мир и взаимодействуют с ним – и она дала нам фантастические формы развлечений в 20-м веке в виде фильмов и телевидения. Но как бы реалистично или художественно ни выглядела фотография, о ее реальности не может быть и речи. Мы смотрим на фотографию и мгновенно видим, что изображение – это застывшая история: свет, который захватил объекты на фотографии, исчез давным-давно и никогда не может быть восстановлен.
Еще больше увлекательных статей на самые разные темы ищите на нашем канале в Яндекс.Дзен. Там выходят статьи, которых нет на сайте.
Голограмма безопасности на банкноте помогает остановить фальшивомонетчиков – их труднее воспроизвести, чем другие устройства безопасности.
Что такое голограмма?
Голограммы немного похожи на вечные фотографии. Это своего рода «фотографические призраки»: они выглядят как трехмерные фотографии, которые каким-то образом попали в ловушку внутри стекла, пластика или металла. Когда вы наклоняете голограмму кредитной карты, то видите изображение чего-то вроде птицы, движущейся «внутри» карты. Как она туда попадает и что заставляет голограмму двигаться? Чем она отличается от обычной фотографии?
Предположим, вы хотите сфотографировать яблоко. Вы держите камеру перед собой, и когда вы нажимаете кнопку спуска затвора, чтобы сделать снимок, объектив камеры ненадолго открывается и пропускает свет, чтобы попасть на пленку (в старомодной камере) или на светочувствительный чип датчика изображения (чип в цифровой камере). Весь свет, исходящий от яблока, исходит из одного направления и попадает в один объектив, поэтому камера может записывать только двумерную картину света, темноты и цвета.
Голограмма слона выглядит так
Если вы смотрите на яблоко, происходит что-то другое. Свет отражается от поверхности яблока в оба ваших глаза, и мозг сливает их в одно стереоскопическое (трехмерное) изображение. Если вы слегка повернете голову, лучи света, отраженные от яблока, будут двигаться по несколько иным траекториям, чтобы встретиться с вашими глазами, и части яблока теперь могут выглядеть светлее, темнее или и вовсе быть другого цвета. Ваш мозг мгновенно все пересчитывает и вы видите несколько иную картину. Вот почему глаза видят трехмерное изображение.
Голограмма – это нечто среднее между тем, что происходит, когда вы фотографируете, и тем, что происходит, когда вы смотрите на что-то реально. Как и фотография, голограмма – это постоянная запись отраженного от объекта света. Но голограмма также выглядит реальной и трехмерной и движется, когда вы смотрите вокруг нее, точно так же, как реальный объект. Это происходит из-за уникального способа, которым создаются голограммы.
Чтобы всегда быть в курсе последних новостей из мира высоких технологий и популярной науки, подписывайтесь на наш новостной канал в Telegram.
Как сделать голограмму?
Создать голограмму можно отражая лазерный луч от объекта, который вы хотите захватить. На самом деле, вы разделяете лазерный луч на две отдельные половины, просвечивая его через полузеркало (кусок стекла, покрытый тонким слоем серебра, так что половина лазерного света отражается и половина проходит через него). Одна половина луча отражается от зеркала, попадает на объект и отражается на фотопластинке, внутри которой будет создана голограмма. Это называется объектным лучом. Другая половина луча отражается от другого зеркала и попадает на ту же самую фотопластинку. Это – опорный луч. Голограмма образуется там, где два луча в пластине встречаются.
Любительская голография — начало пути
Хочу рассказать об одном из своих интересов – оптической голографии. Нет, это про не те голограммы, что показаны в «Звёздных войнах», или видны в пирамидках на экранах мобильных телефонов, не про проекцию на плёнке и т. п. А то, о чём рассказывает Википедия в соответствующей статье, а ещё лучше в англоязычном варианте (это касается всех ссылок на Википедию по тексту). Не буду вдаваться в технические подробности и дебри уравнений (происходящие процессы очень сложны, и по теме написаны десятки объёмных монографий и сотни статей), а попробую очень кратко рассказать, что такое оптическая голография и чем она отличается от фотографии в практическом плане, что в ней такого интересного и каким образом можно в домашних условиях изготовить первую настоящую голограмму. Хоть процесс записи голограмм и похож на классический аналоговый фотографический процесс, но всё же он имеет ряд заметных отличий: другие оптические схемы, не нужен объектив, и соответственно нет необходимости в фокусировке, используются фотографические материалы со значительно большим разрешением, монохроматические источники излучения, принципиальное отсутствие негатива и позитива, строгие требования к отсутствию вибраций, иные правила композиции сцены и мн. др.
Итак, классическая цветная (в чёрно-белой всё также, только с одним каналом цвета) фотография, как аналоговая, так и цифровая, способна фиксировать только амплитуду световых волн, и посредством цветоделения опосредованно длину волны. Получается плоское изображение сцены строго с одного ракурса и с цветами, только с тем или иным успехом создающими для человека иллюзию исходных цветов. Использование свойств бинокулярного зрения и особых художественных приёмов может придать изображению некоторый объём, но также лишь с одного ракурса, цифровые VR системы не в счёт, речь про чистый аналог.
Малоизвестный процесс Липпмана, эксплуатируя явление интерференции света, непосредственно регистрирует, а затем воспроизводит исходный спектральный состав излучения. Вследствие интерференции на фотопластинке запечатлевается сложная картина взаимодействия всех пришедших от сцены световых волн, а в последствии дифракция на получившейся структуре снова восстанавливает эти волны в точности с той же длиной и пропорциональной амплитудой. Получается изображение аналогичное фотографическому, но с точной передачей спектра излучения без привлечения цветоделения и иных ухищрений. Почему же данный способ не вытеснил традиционную цветную фотографию, особенно учитывая, что он появился задолго до неё? Во-первых, высокая сложность: необходимы специальные высокоразрешающие фотоматериалы, особое плотно прилегающее к фотографической эмульсии зеркало (изначально использовалась жидкая ртуть), специальная химическая обработка, полученное изображение воспроизводится только под определёнными углами освещения и наблюдения, и пр. Во-вторых, и так хорошо, получаемые аддитивным смешением цвета́ для человека визуально тождественны исходным длинам волн.
Оптическая голография, также, как и процесс Липпмана эксплуатирует явление интерференции и фиксирует не только интенсивность, но и фазу световой волны, а значит направление падения каждого луча в сцене попавшего на фотографический материал. Происходит запись информации о световом поле, а не об изображении построенном объективом, как в классической фотографии. Потому технология и была названа голографией, что с др.-греческого переводится как «полный» и «пишу», т. е. полная запись, при этом сохраняется вся информация о падающем на регистрирующую среду свете. И при воспроизведении голографическое изображение получается практически неотличимо от оригинального в момент записи, несущее в себе множество признаков глубины, позволяющее рассмотреть запечатлённый объект в разных ракурсах в пределах некоторого угла (имеющее параллакс по одной или двум осям). Если есть тени, блики, отражения, преломления, то они достоверно передадутся, такая себе трассировка лучей.
К слову, существуют пленоптические камеры, реализующие некоторые возможности предоставляемые голографией, но они не получили пока особого распространения.
Для примера, очень удачная цветная голограмма (не моя):
Динамический диапазон сцены может достигать фантастических 1:1 000 000. Голограмма играет роль окна, через которое можно наблюдать сцену в том виде, в котором она была на момент записи. Каждая точка голограммы несёт в себе информацию о всех упавших лучах от всей сцены. Потому разделив голограмму на несколько частей мы потеряем часть информации о сцене, но не в таком объёме, как в случае классической фотографии, в случае голограммы изменив ракурс возможно удастся увидеть объекты сцены, которые были бы полностью потеряны в случае обыкновенной фотографии. Конечно, применение голографии не ограничивается только художественной голографией и развлечениями, это и контроль конструкционных материалов и технологических процессов, и научные исследования, и голографические оптические элементы, и перспективные способы хранения информации, и методы обработки информации и мн. др.
Как же происходит запись голограммы? Как правило для этого требуется два когерентных пучка света, один опорный, идёт непосредственно от лазера и непосредственно падает на регистрирующую среду. Второй отражается от объектов сцены и несёт информацию о ней. Именно они и интерферируют между собой, а полученная картина интерференционных полос фиксируется фотографическим материалом. Затем благодаря дифракции на полученной структуре только одного опорного пучка, не несущего обычно никакой информации, происходит восстановление объектного (второго пучка) и возникает изображение запечатлённой сцены. Происходит кодирование информации о сцене с участием опорного пучка выступающего в роли ключа, затем восстановление закодированной информации с использованием того-же ключа, пучка с такими же свойствами, как и у опорного в момент записи.
Существует множество видов голограмм и способов их записи, две наиболее простых и наглядных схемы это – схема Лейта-Упатниекса, дающая пропускающие голограммы, в ней и опорный пучок и объектный падают на фотоматериал с одной стороны. И схема Денисюка, дающая отражающие голограммы, когда пучки падают с разных сторон. Первые имеют очень высокую яркость и степень реализма, имеют несколько меньшие требования к разрешающей способности фотоматериалов и виброустойчивости, однако с ними сложно получить цветное изображение, а самое главное, что они могут быть воспроизведены только с помощью лазера (так называемые радужные голограммы воспроизводятся белым светом, но их пока рассматривать не будем). Вторые могут быть воспроизведены в обычном белом свете, голограмма самостоятельно вырезает из падающего света нужные ей длины волн, и при записи голограммы одновременно тремя лазерами можно получить цветное изображение. Оба способа имеют применение и легко реализуются, особенно второй, для которого достаточно положить фотопластинку на объект и осветить со стороны пластинки лазером. Не буду сюда вставлять чужие картинки со схемами, кои есть в той же Википедии, сосредоточусь на практической части. Отметив только, что недостатком кроме сложности процесса является необходимость использования высоко когерентного, а значит монохроматического излучения, и для записи цветного изображения также будет необходимо использовать три источника излучения. А также, как и в случае процесса Липпмана у голограмм при воспроизведении особые требования к освещению.
Также существует возможность рассчитать дифракционную картину на ЭВМ и затем записать её на фотоматериал, или отобразить рассчитанную интерференционную картину на голографическом дисплее, которые в данный момент находят на стадии ранних прототипов, например проект MIT. Но на практике к таким способам не прибегают, они пока находятся в стадии научных исследований, кроме фурье-голограмм, которые вполне реально напечатать на обыкновенном принтере, но они особого восторга не вызывают. Голограммы крупных размеров, со сложными эффектами, объектов не существующих в реальности обычно создаются гибридным способом, когда объектный лазерный пучок проходит через LCD панель, которая формирует изображение с одного из ракурсов, и затем интерферирует с опорным пучком на голографическом фотоматериале. Делая несколько экспозиций с разными изображениями получают так называемую мультиплексную голограмму. Немного информации о цифровых синтезированных голограммах есть в статье Википедии.
Что же необходимо для записи классического, полностью аналогового голографического изображения – создания оптической голограммы?
2176 лин./мм. Или, для отражательной голограммы при угле падения опорного пучка 45°, и падении объектного пучка перпендикулярно пластинке. Принимая коэффициент преломления стекла равным 1.6, получим угол опорного пучка после преломления равный arcsin(sin(45°) / 1.6)
4798 лин./мм.
Для этого используются различные приёмы, от того, что кладут объекты сцены непосредственно на фотоматериал, или фотоматериал на объекты, до оптических столов весом сотни килограмм с активными пневматическими опорами. Требования по вибрациям значительно смягчаются при использовании импульсного лазера, но при этом сам лазер становится самой сложной и дорогостоящей частью системы.
Второе. Специальные фотоматериалы, имеющие высокое разрешение (от 1 000 до 5 000 лин./мм и выше) и созданные специально для фиксирования интерференционной картины с использованием тех или иных схем. Существующие виды регистрирующих материалов:
Третье. Лазер также, как и механика, должен быть очень стабильным, причём требования к стабильности крайне высоки. В первую очередь он должен быть одномодовым, как по поперечным модам (один единственный пучок излучения), англ. single transverse, TEM00, так и по продольным (одна частота излучения), англ. single longitudinal. Вот по последней характеристике и нужно искать подходящий лазер. Для голографии кроме длины волны крайне важен такой параметр излучения, как временна́я когерентность. В общих чертах он определяет стабильность параметров излучения во времени, максимально возможное время отставания одного луча по отношению к другому, при котором будет наблюдаться конрастная интерференционная картина. Так как скорость света очень высока, то удобнее манипулировать длиной когерентности (сколько свет проходит за время когерентности). Ширина линии лазерного излучения связана с длиной когерентности по формуле: центральная_длина_волны^2 / ширина_линии. Так для длины когерентности в 10 см ширина линии лазера для 650 нм должна составлять 0.004 нм.
Длина когерентности лазера ограничивает максимальную глубину сцены голограммы, но для разных схем по разному. Например, для схемы записи Денисюка, где объект находится за фотопластинкой, разница хода объектного и опорного пучка приблизительно составит расстояние которое прошел луч от фотопластинки до объекта и обратно. И максимальная глубина сцены составит примерно половину длины когерентности. В случае схемы Лейта-Упатниекса всё зависит от способа освещения, наличия и положения зеркал и светоделительной пластинки, и вполне можно добиться максимальной глубины сцены приблизительно равной длине когерентности.
К счастью, довольно много видов лазеров при правильном подходе способны дать требуемые характеристики, особенно в области малых мощностей. Так многие гелий-неоновые лазеры имеют излучение с длиной когерентности 15-20 см при мощности до десятков мВт. Как это ни странно, большинство недорогих красных лазерных указок и маломощных модулей до 5 мВт также вполне пригодны, и могут давать излучение с длиной когерентности от сантиметра до нескольких метров. А вот зелёные и синие лазерные указки часто не пригодны для чего-то большего чем для запись сцены с монетами в несколько миллиметров глубиной, но тут нужно изучать каждый экземпляр в отдельности, про это будет немного ниже. В общем, обзор лазеров, их выбор, способы питания и стабилизации – это тема для ещё одной, довольно объёмной статьи.
Перейдём непосредственно к практической части. Для первых экспериментов был выбран готовый набор для экспериментов в области голографии, включающий в себя подходящий лазер с блоком питания на батарейках, фотополимерные голографические пластинки, некоторую механику, документацию, тестовый объект в виде модели автомобиля, и другие вспомогательные объекты вроде брелока с синим светодиодом в качестве источника неактиничного (не влияющего на фотоматериалы) свет – Litiholo Hologram kit c дополнением Reflection upgrade.
Фотоматериалы. Фотополимер с защитным слоем на оптическом стекле толщиной 1.8 мм, заявленная дифракционная эффективность (что-то вроде КПД в данном случае) более 90%, чувствительность в диапазоне от 400 до 690 нм, т. е. можно записывать и цветные голограммы. Подходят, как для записи пропускающих, так и отражательных голограмм. Фотопластинки до экспонирования фиолетового цвета, после облучения лазером в наиболее освещённых местах обесцвечиваются, полное обесцвечивание производится ярким белым светом, никакой другой процедуры проявления или фиксирования не требуется.
Лазер. Полупроводниковый лазерный модуль 638 нм с заявленной мощностью 5 мВт, имеет переменный резистор для точной настройки тока и блок питания на батарейках, заявлен как пригодный для голографии.
В соответствии с комплектной инструкцией была собрана схема для записи пропускающих голограмм.
Лазер был предварительно прогрет (оставлен во включенном состоянии) в течении 15 минут, а генерируемый спектр проверен самым простым способом: за лазером устанавливается лист белой бумаги, а перед ним параллельно бумажному листу на расстоянии 30 см и перпендикулярно лучу стеклянная пластинка (например, предметное стекло для микроскопа или фотопластинка с удалённым чувствительным слоем), на листе должна наблюдаться чёткая интерференционная картина состоящая из светлых и тёмных полос, в тёмных промежутках должны отсутствовать более слабые светлые полосы, а сама картина должна быть стабильной во времени и как можно более контрастной. Если полосы не наблюдаются, смещаются во времени, или картина имеет очень низкую контрастность, то не имеет особого смысла пытаться записать голограмму, необходимо изменить ток лазера, дать ещё времени на прогрев и/или заменить сам лазер. Если картина чёткая и без промежуточных полос, то можно говорить о том, что длина когерентности не меньше чем толщина_пластинки * 2 * коэффициент_преломления. Так при толщине стекла 1.8 мм это число составит примерно 5.5 мм, потому лучше найти стекло потолще или лучше набор стёкол разной толщины. Скорее всего длина когерентности будет даже больше, так как без инструментальных способов измерения оценка контрастности слишком субъективна. Точнее можно будет сказать записав голограмму или воспользовавшись интерферометром Майкельсона.
Затем была произведена запись голограммы комплектного объекта, модели автомобиля.
К сожалению, камера не передаёт динамического диапазона получаемых изображений их яркости и объёма. Вживую, когда убираешь объект создаётся ощущение, что ничего не изменилось, что объект всё там же, только немного изменяется его освещённость, остаётся объём, отражения, тени, блики и возможность изменения угла наблюдения. Изображение проявляется только в свете лазерного излучения падающего под углом падения опорного пучка.
Следующей была собрана схема для записи отражательных голограмм с помощью дополнительных деталей из Reflection upgrade, которые лишены выше озвученного недостатка и видны в белом свете.
Тут уже необходимо сооружать башню для лазера, и ни о какой ¼ части длины волны речь не идёт. Однако это требование распространяется только на взаимное расположение объекта и фотоматериала, и некоторых оптических элементов, лазер просто не должен откровенно болтаться, и всё будет хорошо.
Полученные голограммы видны в белом свете, лучше всего подходят точечные источники с непрерывным спектром, солнечный свет или свет от галогенных ламп, а угол падения светового пучка должен быть тем же, что и при записи. Коэффициент цветопередачи источника освещения крайне важен, так как отражательная голограмма создаёт изображение отражая некоторый диапазон длин волн, а остальные пропускает, и этот самый диапазон для максимальной яркости изображения должен содержаться в свете в полном объёме. Так как запись ведётся красным лазером, то этот диапазон получается красно-желтым, цвет зависит от угла падения света, и изображение получается несколько приятнее на вид, чем монохромное в свете лазерного излучения.
Голограммы получились, и это показывает, как легко можно начать (а для кого-то и закончить, если не зацепило) развиваться в этом довольно популярном на западе, и практически забытом на пост советском пространстве увлечении, которое вполне может перейти в профессиональное и коммерческое русло, например изготовление изобразительных голограмм на заказ. Также это отличная тема для привлечения интереса школьников к наукам, кружковой деятельности, первых научных работ, затрагивающая и способная интегрировать множество разделов физики, техники, технологии, химии, радиоэлектроники, информационных технологий.
Если тема вызовет интерес, то постараюсь ещё написать про механику, оптику, лазеры, фотоматериалы, в том числе самодельные и т. д. Также с удовольствием учту все замечания и пожелания, дополню статью недостающей по мнению читателей информацией.
Для более глубокого изучения вопроса также могу порекомендовать следующие источники: