Как сделать бесконечную дробь

Математика. 6 класс

Конспект урока

Бесконечные периодические десятичные дроби

Перечень рассматриваемых вопросов:

– понятие бесконечной периодической десятичной дроби;

– преобразование обыкновенных дробей в бесконечные периодические дроби;

– действия с периодическими дробями.

Бесконечная периодическая десятичная дробь – это дробь, у которой одна цифра или группа цифр повторяются. Повторяющаяся группа цифр называется периодом и записывается в скобках.

Любое рациональное число p/q можно разложить в периодическую десятичную дробь.

Любая периодическая дробь есть десятичное разложение некоторого рационального числа.

1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Обыкновенную дробь можно разложить в конечную десятичную, если в знаменателе нет простых множителей, кроме 2 и 5.

Вы уже знаете, как это сделать.

1. Умножить числитель и знаменатель на одно и то же число, чтобы привести к знаменателю 10, 100, 1000 и т. д.;

2. Выполнить деление числителя на знаменатель.

Пример 1. Умножили числитель и знаменатель на 2.

Пример 2. Сначала сократили дробь.

Пример 3. Выполнили деление 3 на 125.

Рассмотрим примеры, когда привести к знаменателю 10, 100 и т. д. нельзя. Возможно только деление числителя на знаменатель.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Заметим, что при делении получаются повторяющиеся остатки и, соответственно, повторяющиеся цифры в частном. Из-за этого процесс деления бесконечен. Отсюда происходит бесконечная десятичная дробь.

Рассмотрим другие примеры.

Повторяющиеся цифры 3; 27; 6 называют периодом дроби. Бесконечные десятичные дроби 0,333…; 0,2727…; 0,1666… называют периодическими.

«Нуль целых и три в периоде»

«Нуль целых и 27 в периоде»

«Нуль целых одна десятая и шесть в периоде»

Периодическая дробь – это бесконечная десятичная дробь, у которой, начиная с некоторого десятичного знака, повторяется одна и та же цифра или несколько цифр (период дроби).

Отметим, что любое рациональное число p/q разлагается в периодическую десятичную дробь.

Любая периодическая дробь есть десятичное разложение некоторого рационального числа.

Замечание. При делении уголком десятичное разложение с периодом 9 не возникает.

Далее рассмотрим, как выполняются действия с периодическими дробями?

Запишем дробь 1/3 в виде бесконечной периодической дроби 0,333…

Запишем дробь 0,3 в следующем виде 0,300… Приписывая бесконечно много нулей, мы превращаем конечную дробь в равную ей бесконечную периодическую дробь с периодом 0.

Теперь можем сравнить: 0,333… > 0,300…

2. Разложите обыкновенную дробь в бесконечную периодическую десятичную дробь, округлите до десятых.

Разбор заданий тренировочного модуля

Представьте в виде периодической дроби. В ответе укажите её период.

Используя предыдущие задания, запишите периодическую дробь в виде обыкновенной дроби: 0,(3); 0,(5); 0,(6).

Задание 3 ⃰ (повышенного уровня сложности)

Задача: периодическую дробь 0,(1) записать в виде обыкновенной дроби.

Источник

Десятичные дроби

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

Обучение на курсах по математике — отличный способ закрепить полученные знания на практике и подтянуть сложные темы.

Как записать десятичную дробь

Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.

Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.

Пример 2. Перевести 37/1000 в десятичную дробь.

Ответ: 37/1000 = 0,037.

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой?Читается, как
одна цифра — десятых;1,3 — одна целая, три десятых;
две цифры — сотых2,22 — две целых, двадцать две сотых;
три цифры — тысячных;23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных;0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Преобразование десятичных дробей

Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!

Как перевести десятичную дробь в проценты

Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.

А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:

Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.

2/5 = 0,4
0,4 · 100% = 40%

8/25 = 0,32
0,32 · 100% = 32%

Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:

Преобразование десятичных дробей

Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.

Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).

Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!

Пример 1. Перевести 5,4 в смешанное число.

Пример 2. Перевести 4,005 в смешанное число.

Ответ: 4,005 = 4 1/200.

Пример 3. Перевести 5,60 в смешанное число.

Как перевести десятичную дробь в обыкновенную

Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:

Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!

Действия с десятичными дробями

С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.

Как разделить десятичную дробь на натуральное число

Пример 2. Разделить 183,06 на 45.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Ответ: 183,06 : 45 = 4,068.

Как разделить десятичную дробь на обыкновенную

Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.

Пример 1. Разделить 0,25 на 3/4.

Пример 2. Разделить 2,55 на 1 1/3.

Ответ: 2,55 : 1 1/3 = 1 73/80.

Как умножить десятичную дробь на обыкновенную

Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.

Пример 1. Умножить 2/5 на 0,8.

Пример 2. Умножить 0,28 на 6 1/4.

Ответ: 0,28 ∗ 6 1/4 = 0,8.

Источник

Как перевести дробь в десятичную и наоборот

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Что такое дробь: понятие

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Дроби бывают двух видов:

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.

Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как «пять целых одна четвертая», а записывается — 5 1\4.

Что такое десятичная дробь

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

В краткой записи периодической дроби повторяющиеся цифры пишут в скобках и называют периодом дроби. Например, вместо 1,555… записывают 1,(5) и читают «одна целая и пять в периоде».

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Обучение на курсах математики в Skysmart поможет улучшить оценки в школе и подготовиться к выпускным экзаменам!

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

Обыкновенная и десятичная дробь — давние друзья. Вот как они связаны:

Как перевести обычную дробь в десятичную

Прежде чем узнать, как от обычной записи перейти к десятичной, вспомним различия двух видов дробей и сформулируем важное правило.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Обыкновенную дробь можно перевести в конечную десятичную дробь только при условии, что её знаменатель можно разложить на простые множители 2 и 5 любое количество раз. Например:

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Дробь 11/40 можно преобразовать в конечную десятичную, потому что знаменатель раскладывается на множители 2 и 5.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Дробь 17/60 нельзя преобразовать в конечную десятичную дробь, потому что в её знаменателе кроме множителей 2 и 5, есть 3.

А теперь перейдем к самому главному вопросу: рассмотрим несколько алгоритмов перевода обыкновенной дроби в десятичную.

Способ 1. Превращаем знаменатель в 10, 100 или 1000

Чтобы превратить дробь в десятичную, нужно числитель и знаменатель умножить на одно и то же число так, чтобы в знаменателе получилось 10, 100, 1000 и т.д. Но прежде, чем приступать к вычислениям, нужно проверить, можно ли вообще превратить данную дробь в десятичную.

Для примера возьмем дробь 3/20. Ее можно привести в конечную десятичную, потому что её знаменатель раскладывается на множители 2 и 5.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Мы можем получить в нижней части 100: достаточно умножить 20 на 5. Про верхнюю часть тоже не забываем: получаем 15.

Теперь запишем числитель отдельно. Отсчитываем справа столько же знаков, сколько нулей стоит в знаменателе, и ставим запятую. В нашем примере в знаменателе 100 (у него два нуля), значит ставим запятую после отсчета двух знаков и получаем 0,15. Преобразование готово.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Способ 2. Делим числитель на знаменатель

Чтобы перевести обыкновенную дробь в десятичную, достаточно разделить ее верхнюю часть на нижнюю. Проще всего это сделать, конечно же, на калькуляторе — но на контрольных им пользоваться не разрешают, поэтому учимся по-другому.

Для примера возьмем дробь 78/100. Убедимся, что дробь можно привести в конечную десятичную.

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Делим столбиком числитель на знаменатель — преобразование готово:

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Если при делении уголком стало ясно, что процесс не заканчивается и после запятой выстраиваются повторяющиеся цифры — эту дробь нельзя перевести в конечную десятичную. Ответ можно записать в виде периодической дроби — для этого нужно записать повторяющееся число в скобки, вот так: 1/3 = 0,3333.. = 0,(3).

Для удобства мы собрали табличку дробей со знаменателями, которые чаще всего встречаются в заданиях по математике. Скачайте ее на гаджет или распечатайте и храните в учебнике как закладку:

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Как перевести десятичную дробь в обыкновенную

Не будем придумывать велосипед. По сути, алгоритм превращения десятичной дроби в обыкновенную противоположен тем, что мы разобрали в предыдущей части. Вот, как это выглядит в обратную сторону:

Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Еще алгоритм: как преобразовать десятичную дробь в обыкновенную

Вот и всё! Эта схема значительно проще и быстрее. Проверим:

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Как видим, в дроби 0,55 после запятой стоит две цифры — 5 и 5. Поэтому n = 2. Если убрать запятую и нули слева, то получим число 55. Переходим ко второму шагу: 10n = 102 = 100, поэтому в знаменателе стоит 100. Остается сократить числитель и знаменатель. Вот и ответ: 11/20.

Источник

57 Представление в виде периодической дроби. Вариант 2

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Представление рационального числа в виде бесконечной десятичной периодической дроби

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Представление рационального числа в виде бесконечной десятичной периодической дроби. Перевод бесконечной периодической десятичной дроби в обыкновенную дробь

Цели обучения: 6.1.2.18 распознавать, какие обыкновенные дроби представимы как конечные десятичные дроби; 6

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

6.1.2.18
распознавать, какие обыкновенные дроби представимы как конечные десятичные дроби;
6.1.2.19
представлять рациональное число в виде бесконечной периодической десятичной дроби;
6.1.2.20
находить период бесконечной периодической десятичной дроби;
6.1.2.21
переводить бесконечную периодическую десятичную дробь в обыкновенную дробь.

Учащийся: знает: как распознавать, какие обыкновенные дроби представимы как конечные десятичные дроби; как представлять рациональное число в виде бесконечной периодической десятичной дроби; как находить период…

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Учащийся:
знает:
как распознавать, какие обыкновенные дроби представимы как конечные десятичные дроби;
как представлять рациональное число в виде бесконечной периодической десятичной дроби;
как находить период бесконечной периодической десятичной дроби;
как переводить бесконечную периодическую десятичную дробь в обыкновенную дробь;
умеет:
распознавать, какие обыкновенные дроби представимы как конечные десятичные дроби;
представлять рациональное число в виде бесконечной периодической десятичной дроби;
находить период бесконечной периодической десятичной дроби;
переводить бесконечную периодическую десятичную дробь в обыкновенную дробь.

Среди выражений найдите равные: 2

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

1. Среди выражений найдите равные:

2. Выполните деление:
а) б)

3. Вставьте пропущенные числа:
а) б)

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Выполнить деление a : b.

3. Как дробь записать обыкновенной?

Найдите значение выражения:

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Найдите значение выражения:

Преобразуем обыкновенные дроби в десятичные:

Что за дробь 0,1666…?
Что делать в случае, когда в выражении встречаются такие дроби?

Источник

Сравнение конечных и бесконечных десятичных дробей: правила, примеры, решения

В данной теме будет рассмотрена как общая схема сравнения десятичных дробей, так и детальный разбор принципа сравнения конечных и бесконечных дробей. Теоретическую часть закрепим решением типичных задач. Также разберем на примерах сравнение десятичных дробей с натуральными или смешанными числами, и обыкновенными дробями.

Внесем уточнение: в теории ниже будет рассмотрено сравнение только положительных десятичных дробей.

Общий принцип сравнения десятичных дробей

Для каждой конечной десятичной и бесконечной периодической десятичной дробей существуют соответствующие им некоторые обыкновенные дроби. Следовательно, сравнение конечных и бесконечных периодических дробей возможно производить как сравнение соответствующих им обыкновенных дробей. Собственно, это утверждение и является общим принципом сравнения десятичных периодических дробей.

На основе общего принципа формулируются правила сравнения десятичных дробей, придерживаясь которых возможно не осуществлять перевод сравниваемых десятичных дробей в обыкновенные.

То же самое можно сказать и про случаи, когда происходит сравнение десятичной периодической дроби с натуральными числами или смешанными числами, обыкновенными дробями – заданные числа необходимо заменить соответствующими им обыкновенными дробями.

Если же речь идет о сравнении бесконечных непериодических дробей, то его обычно сводят к сравнению конечных десятичных дробей. Для рассмотрения берется такое количество знаков сравниваемых бесконечных непериодических десятичных дробей, которое даст возможность получить результат сравнения.

Равные и неравные десятичные дроби

Равные десятичные дроби – это две конечные десятичные дроби, у которых равны соответствующие им обыкновенные дроби. В противном случае десятичные дроби являются неравными.

Теперь рассмотрим содержание понятия равных и неравных бесконечных периодических десятичных дробей.

Равные бесконечные периодические дроби – это бесконечные периодические дроби, у которых равны отвечающие им обыкновенные дроби. Если же соответствующие им обыкновенные дроби не равны, то заданные для сравнения периодические дроби также являются неравными.

Данное определение позволяет сделать следующие выводы:

Осталось рассмотреть равные и неравные бесконечные непериодические десятичные дроби. Такие дроби представляют из себя иррациональные числа, и их невозможно перевести в обыкновенные дроби. Следовательно, сравнение бесконечных непериодических десятичных дробей не сводится к сравнению обыкновенных.

Равные бесконечные непериодические десятичные дроби – это непериодические десятичные дроби, записи которых полностью совпадают.

Логичным будет вопрос: как сравнить записи, если увидеть «законченную» запись таких дробей невозможно? Сравнивая бесконечные непериодические десятичные дроби, нужно рассматривать только некоторое конечное число знаков заданных для сравнения дробей так, чтобы это позволило сделать вывод. Т.е. по сути сравнение бесконечных непериодических десятичных дробей заключается в сравнении конечных десятичных дробей.

Правила сравнения десятичных дробей. Решение примеров

Если установлен факт неравенства двух десятичных дробей, обычно также необходимо определить, какая из них больше, а какая – меньше. Рассмотрим правила сравнения десятичных дробей, которые дают возможность решить вышеуказанную задачу.

Очень часто достаточно лишь сравнить целые части заданных к сравнению десятичных дробей.

Та десятичная дробь, у которой целая часть больше, является бОльшей. Меньшей является та дробь, у которой целая часть меньше.

Указанное правило распространяется как на конечные десятичные дроби, так и на бесконечные.

Решение

В случае, когда целые части заданных к сравнению дробей равны, решение задачи сводится к сравнению дробных частей. Сравнение дробных частей производится поразрядно – от разряда десятых к более младшим.

Рассмотрим сначала случай, когда нужно сравнить конечные десятичные дроби.

Решение

В некоторых задачах на сравнение конечных десятичных дробей с разным количеством знаков после запятой необходимо к дроби с меньшим количеством десятичных знаков приписывать нужное количество нулей справа. Удобно уравнивать таким образом количество десятичных знаков в заданных дробях еще до начала сравнения.

Решение

Решение

Сравнивая бесконечные десятичные дроби, также применяют поразрядное сравнение, которое окончится тогда, когда значения в каком-то разряде у заданных дробей окажутся различными.

Решение

Решение:

Сравнение десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами

Чтобы получить результат сравнения десятичной дроби с натуральным числом, необходимо сравнить целую часть заданной дроби с заданным натуральным числом. При этом надо учесть, что периодические дроби с периодами 0 или 9 нужно предварительно представить в виде равных им конечных десятичных дробей.

Если целая часть заданной десятичной дроби меньше заданного натурального числа, то и вся дробь является меньшей по отношению к заданному натуральному числу. Если целая часть заданной дроби больше или равна заданному натуральному числу, то дробь больше заданного натурального числа.

Решение:

Решение

Решение

Чтобы произвести сравнение десятичной дроби с обыкновенной дробью или смешанным числом, необходимо:

— записать обыкновенную дробь или смешанное число в виде десятичной дроби, а затем выполнить сравнение десятичных дробей или
— записать десятичную дробь в виде обыкновенной дроби (за исключением бесконечной непериодической), а затем выполнить сравнение с заданной обыкновенной дробью или смешанным числом.

Решение

Решим задачу двумя способами.

Решение

Бесконечную непериодическую десятичную дробь нельзя представить в виде смешанного числа, но возможно перевести смешанное число в неправильную дробь, а ее, в свою очередь, записать в виде равной ей десятичной дроби. Тогда: 4 3 8 = 35 8 и

Как сделать бесконечную дробь. Смотреть фото Как сделать бесконечную дробь. Смотреть картинку Как сделать бесконечную дробь. Картинка про Как сделать бесконечную дробь. Фото Как сделать бесконечную дробь

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *