Как рисовать сетевой график
Практика построения сетевого графика
Представим себе ситуацию развития проекта капитального строительства на производственном предприятии. Проект успешно инициирован и полным ходом идут работы по его планированию. Сформирована и утверждена иерархическая структура работ, план по вехам принят. Разработан первичный вариант календарного плана. Поскольку задача оказалась достаточно масштабной, куратор принял решение о разработке еще и сетевой модели. Расчет сетевого графика в прикладном аспекте его исполнения является предметом настоящей статьи.
Перед стартом моделирования
Методологический базис сетевого проектного планирования представлен на нашем сайте несколькими статьями. Я лишь сошлюсь на две из них. Это материалы, посвященные этапу сетевого планирования проекта в целом и непосредственно моделированию сетевого графика проекта. Если в ходе повествования у вас будут возникать вопросы, просмотрите ранее представленные осмысления, основная суть методологии в них изложена. В настоящей статье мы рассмотрим небольшой пример локальной части комплекса строительно-монтажных работ в рамках значительной проектной реализации. Расчеты и моделирование будем выполнять методом «вершина-работа» и классическим табличным способом («вершина-событие») с применением МКР (метода критического пути).
Построение сетевого графика мы начнем на основе первой итерации календарного плана, выполненного в форме диаграммы Ганта. Для целей наглядности предлагаю не учитывать отношения предшествования и максимально упростить последовательность действий. Хотя на практике такое бывает редко, представим в нашем примере, что операции выстроены в последовательность вида «окончание-начало». Ниже вашему вниманию представляются две таблицы: выписка из списка работ проекта (фрагмент из 15-ти операций) и список параметров сетевой модели, необходимый для представления формул.
Пусть вас не пугает обилие элементов. Построение сетевой модели и расчет параметров достаточно просто выполнить. Важно тщательно подготовиться, иметь под рукой иерархическую структуру работ, линейный график Ганта – в общем, все, что дает возможность определиться с последовательностью и взаимосвязями действий. Еще в первые разы выполнения графика я рекомендую иметь перед собой формулы расчета требуемых значений. Они представлены ниже.
Что нам потребуется определить в ходе построения графика?
Последовательность действий по моделированию
Шаг первый
Построение сетевого графика начинаем путем размещения прямоугольников задач последовательно слева-направо, применяя правила, описанные в предыдущих статьях. При выполнении моделирования методом «вершина-работа» основным элементом диаграммы выступает семисегментный прямоугольник, в составе которого отражены параметры начала, окончания, длительности, резерва времени и наименования или номера операций. Схема представления ее параметров показана далее.
В соответствии с логикой последовательности операций с помощью специализированной программы, MS Visio или любого редактора размещаем образы работ в заданном выше формате. В первую очередь заполняем наименования выполняемых действий, их номера и длительность. Рассчитываем раннее начало и раннее окончание с учетом формулы раннего начала текущего действия в условиях нескольких входящих связей. И так проходим до завершающей фрагмент операции. При этом, в нашем примере проекта тем же графиком Ганта не предусмотрены исходящие связи от операций 11, 12, 13 и 14. «Подвешивать» их на сетевой модели недопустимо, поэтому мы добавляем фиктивные связи к конечной работе фрагмента, выделенные на рисунке синим цветом.
Шаг второй
Находим критический путь. Как известно, это путь, имеющий самую большую продолжительность действий, которые в него входят. Просматривая модель, мы выбираем связи между работами, имеющими максимальные значения раннего окончания действий. Намеченный критический путь выделяем стрелочками красного цвета. Полученный результат представлен на промежуточной схеме далее.
Шаг третий
Заполняем значения позднего окончания, позднего начала и полного резерва работ. Для выполнения расчета переходим к конечной работе и берем ее за последнюю операцию критического пути. Это означает, что поздние значения окончания и начала идентичны ранним, и от последней операции фрагмента мы начинаем двигаться в обратную сторону, заполняя нижнюю строку схематического представления действия. Модель выполнения расчета показана ниже на схеме.
Шаг четвертый
Четвертым шагом алгоритма сетевого моделирования и расчетов выполняется вычисление резервов и коэффициента напряженности. Первым делом имеет смысл обратить внимание на полные резервы путей некритических направлений (R). Они определяются путем вычитания из продолжительности критического пути временной длительности каждого из этих путей, пронумерованных на схеме итогового сетевого графика.
Дополнительные расчеты модели
Выполнение расчета общего резерва текущей операции производится путем вычитания из значения позднего начала раннего начала или из позднего окончания раннего окончания (см. схему расчета выше). Общий (полный) резерв показывает нам возможность начала текущей работы позже или увеличения продолжительности на длительность резерва. Но нужно понимать, что пользоваться полным резервом следует с большой осторожностью, потому что работы, стоящие от текущего события дальше остальных, могут оказаться без запаса времени.
Помимо полных резервов в сетевом моделировании оперируют также и частными или свободными резервами, которые представляют собой разницу между ранним началом последующей работы и ранним окончанием текущей. Частный резерв показывает, есть ли возможность сдвинуть ранее начало операции вперед без ущерба для начала следующей процедуры и всему графику в целом. Следует помнить, что сумма всех частных резервных значений тождественна полному значению резерва для рассматриваемого пути.
Главной задачей выполнения вычислений различных параметров является оптимизация сетевого графика и оценка вероятности выполнения проекта в срок. Одним из таких параметров является коэффициент напряженности, который показывает нам уровень сложности реализовать работу в намеченный срок. Формула коэффициента представлена выше в составе всех расчетных выражений, применяемых для анализа сетевого графика.
Коэффициент напряженности определяется как разница между единицей и частного от деления полного резерва времени работы на разницу длительности критического пути и особого расчетного значения. Это значение включает ряд отрезков критического пути, совпадающих с максимально возможным путем, к которому может быть отнесена текущая операция (i-j). Далее помещен расчет частных резервов и коэффициентов напряженности работ для нашего примера.
Коэффициент напряженности варьируется от 0 до 1,0. Значение 1,0 устанавливается для работ, находящихся на критическом пути. Чем ближе значение некритической операции к 1,0, тем труднее удержаться в плановых сроках ее реализации. После того, как значения коэффициента по всем действиям графика посчитаны, операции, в зависимости от уровня этого параметра, могут быть отнесены к категории:
Оптимизация сетевой модели, нацеленная на сокращение общей продолжительности проекта, как правило, обеспечивается следующими мероприятиями.
Использование табличного метода
Общепризнанные ПП календарного планирования (MS Project, Primavera Suretrack, OpenPlan и т.п.) способны вычислять ключевые параметры сетевой модели проекта. Мы же в настоящем разделе табличным методом выполним настройку подобного расчета обычными средствами MS Excel. Для этого возьмем наш пример фрагмента проектных операций проекта в области СМР. Расположим основные параметры сетевого графика в столбах электронной таблицы.
Преимуществом выполнения расчетов табличным способом является возможность простой автоматизации вычислений и избежание массы ошибок, связанных с человеческим фактором. Красным цветом будем выделять номера операций, располагающихся на критическом пути, а синим цветом отметим расчетные позиции частных резервов, превышающих нулевое значение. Разберем пошагово расчет параметров сетевого графика по основным позициям.
Мы рассмотрели практические механизмы составления сетевого графика и расчета основных параметров временной продолжительности проекта. Таким образом, вплотную приблизились к исследованию возможностей анализа, проводимого с целью оптимизации сетевой модели и формирования непосредственно плана действий по улучшению ее качества. Настоящая тема занимает немного места в комплексе знаний проект-менеджера и не так уж и сложна для восприятия. Во всяком случае, каждый РМ обязан уметь воспроизводить визуализацию графика и выполнять сопутствующие расчеты на хорошем профессиональном уровне.
Построение сетевого графика
ПОСТРОЕНИЕ СЕТЕВОГО ГРАФИКА
Сетевой график или стреловидная диаграмма представляет собой ориентированный граф без контуров. Ориентированным граф называется потому, что стрелками показаны направления его ребер (дуг). Отсутствие контуров создает условия, при которых, двигаясь по направлению стрелок, через каждое ребро можно пройти только один раз. Сетевой график позволяет наглядно показать последовательность и взаимосвязь работ, входящих в программу или какой-либо план действий. Работы на такой диаграмме изображаются дугами. Таким образом, каждая дуга сетевого графика, имеющая вид стрелки, обозначает начало и конец работы, представляющее собой событие. Эти события будем изображать кружками. Кружок вначале стрелки будет начальным событием для работы, показанной данной стрелкой. Кружок в конце стрелки – конечным событием данной работы и начальным для последующей работы.
Граф, применяемый для построения сетевого графика, обладает еще одним свойством – у него нет висячих вершин. В этом случае все события на графике, кроме исходного и завершающего программу или план действия, имеют как предшествующие, так и последующие работы. Стрелки, входящие в кружок, обозначающий событие, будут отображать предшествующие работы. Стрелки, выходящие из кружка, характеризующего событие, будут показывать последующие работы. Исходное событие изображается кружком, из которого только выходят стрелки. Завершающее событие характеризуется тем, что у него имеются только входящие стрелки (предшествующие работы).
Построение сетевого графика требует соблюдения ряда правил.
Правило 1. Последовательность следующих друг за другом работ изображаются в виде цепи стрелок, соединенных друг с другом кружками. Например: работа б должна следовать за работой а (а ® б), работа в должна выполняться после завершения работы б (б ® в) и, наконец, работа в непосредственно предшествует работе г (в ® г). Такая последовательность работ на сетевом графике будет иметь следующий вид (рис. 3.3.2):
Правило 2. Несколько работ, одновременно непосредственно предшествующие какой-либо одной последующей работе, называются сходящимися. Например: работе г непосредственно предшествуют работы а, б и в (а, б, в ® г). Эта ситуация на сетевом графике должна изображаться так, как показано на рис. 3.3.3.
Правило 3. Несколько работ, непосредственно следующие за одной какой-либо предшествующей работой, называются расходящимися. Например: работа а непосредственно предшествует работам б, в и г (а ® б, в, г). На сетевом графике данная ситуация должна будет иметь вид, показанный на рис. 3.3.4.
Правило 4. На сетевом графике не должны показываться не существующие связи последующих и непосредственно предшествующих работ. Например: работы а, б, в предшествуют работе г (а, б, в ® г), вместе с тем, работа а непосредственно предшествует работе д (а ® д). На сетевом графике эта ситуация должна отображаться способом, показанным на рис. 3.3.5 (а) и не может изображаться способом, показанным на рис. 3.3.5 (б), так как в последнем случае будут иметь место несуществующие связи между работами б, в и д.
На рис. 3.3.5 (а) штриховая стрелка изображает фиктивную работу (4–5), указывающую на то, что работа г не может начинаться до завершения работы а. Такая работа не требует времени или каких-либо других ресурсов для ее выполнения. Она служит лишь для отражения существующей связи между работами а и г.
Правило 5. Любые два соседних события на сетевом графике могут быть соединены одной стрелкой. Это означает, что при параллельном выполнении работ для отображения указанной ситуации возникает необходимость введения дополнительного события и фиктивной работы. Например: работы а, б, выходящие из события 6, являются непосредственно предшествующими для работы в (а, б ® в). Эта ситуация должна изображаться способом, показанном на рис. 3.3.6 (а) и не может изображаться способом, показанном на рис. 3.3.6 (б).
При построении сетевого графика удобно пользоваться технологией, показанной на рис. 3.3.7. В данном случае рассматривается построение сетевого графика для выполнения проекта, включающего в себя 11 работ, обозначенных буквами. Работы проекта имеют следующие технологические связи:
б, н ® п
В перечне связей знаком обозначено исходное событие комплекса работ, а знаком – завершающее событие.
Построение сетевого графика не достаточно для контроля и управления ходом выполнения проекта. Необходим расчет ряда параметров сетевого графика и определение критического пути. Всякая последовательность работ на сетевом графике, имеющая начало в исходном событии, а конец – в завершающем, называется полным путем. Полный путь, требующий максимальных затрат времени, называется критическим путем. Любая другая последовательность работ представляет собой просто путь.
Для контроля и управления ходом работ по сетевому графику необходим расчет следующих параметров:
1. Необходимое для выполнения каждой отдельной работы время. Его называют ожидаемым временем (). Поскольку действительно необходимое время может зависеть от множества факторов, его определяют как вероятностную величину на основе экспертных оценок предполагаемых исполнителей. Определение ожидаемого времени на выполнение работы может осуществляться либо по двум, либо по трем экспертным оценкам. На основе двух оценок расчет
осуществляется по следующей формуле:
,
где – пессимистическая оценка эксперта, предполагающая задержки не по вине исполнителя;
– оптимистическая оценка эксперта, предполагающая отсутствие непредвиденных задержке.
По трем экспертным оценкам расчет осуществляется по такой формуле:
,
где кроме рассмотренных выше оценок и
используется оценка наиболее вероятного времени
, которое потребуется для выполнения данной работы.
2. Раннее время свершения каждого события (). Оно представляет собой минимальный срок, необходимый для выполнения всех работ, предшествующих данному событию, и равный максимальному по длительности пути от исходного события до рассматриваемого. Расчет его можно проводить по следующей формуле:
,
где i – номер начального события для данной работы;
j – номер конечного события.
Расчет раннего времени свершения событий начинается с исходного, у которого .
3. Позднее время свершения каждого события ( ). Оно представляет собой максимальный из допустимых срок, необходимый для выполнения всех предшествующих работ без изменения продолжительности критического пути. Расчет его можно осуществить на основе следующей формулы:
,
где i и j имеют те же значения, что и в предыдущем случае.
Расчет позднего времени свершения событий начинается с завершающего, у которого .
4. Резерв времени событий, то есть время, на которое может быть отсрочено наступление соответствующего события. Оно равно разности между поздним и ранним сроками свершения события.
.
5. Полный резерв времени работы показывает время, на которое может быть увеличена продолжительность работы без изменения длительности критического пути. Если при выполнении какой-либо работы будет израсходован весь полный ее резерв времени, то все другие работы данного пути, следующие за ней, не будут иметь резервов времени. Расчет полного резерва времени работы () осуществляется по следующей формуле:
.
6. Свободный резерв времени показывает время, на которое может быть увеличена продолжительность работы без изменения резервов времени последующих работ, лежащих на данном пути. Расчет свободного времени работы () осуществляется по формуле:
.
Свободный резерв времени, так же как и полный, позволяют менеджерам вносить коррективы в управляемый процесс на основе данных текущего контроля. Разница заключается в том, что свободным резервом времени можно позволить распоряжаться и исполнителям, поскольку это не повлияет на другие работы программы, а использование полного резерва требует учета возможностей исполнителей последующих работ.
7. Коэффициент напряженности работ () характеризует степень свободы в сроках начала и окончания работ, не лежащих на критическом пути. Работы критического пути не имеют резервов времени, и их коэффициент напряженности равен 1. У работ, не лежащих на критическом пути, этот коэффициент > 1. Расчет этого показателя осуществляется только для работ, не лежащих на критическом пути, по следующей формуле:
,
где – длительность максимального пути, проходящего через данную работу;
–длительность отрезков критического пути, лежащих на рассматриваемом пути;
– длительность критического пути.
При условии взаимозаменяемости используемых в трудовом процессе ресурсов, перераспределение их следует проводить с учетом значения показателя .
То есть, перераспределение ресурсов надо начинать с работ, имеющих минимальный коэффициент напряженности, и направлять их на работы с максимальным коэффициентом напряженности* [6].
Ленточные графики Ганта – это отображение прохождения какого-либо процесса отрезками прямых линий на графике, осями координат которого служат время и операции (работы) рассматриваемого процесса. Способ его применения для контроля загрузки оборудования и для выработки решения о времени остановки отдельных единиц оборудования на профилактический ремонт показан на рис. 3.3.8. Например, фрезерный станок 3 загружен лишь 24.09 и 25.09. Следовательно, первые три дня недели его можно загрузить неплановой работой или провести его профилактический ремонт, как это предусмотрено по графику для сверлильного станка 1 на 21.09 и 22.09. Ленточный график Ганта можно использовать в качестве плана осуществления технологического процесса производства изделий. На рис. 3.3.8 можно увидеть пример фрагмента такого плана. Партия деталей А 21.09 и четверть рабочего дня 22.09 должна проходить обработку на токарном станке 1. Затем три четверти рабочего времени 22.09, полный рабочий день 23.09 и четверть 24.09 эти детали должны обрабатываться на фрезерном станке 1. После выполнения названных операций партия деталей А 24.09 передается на сверлильный станок 1.
График Ганта показывает требующееся на выполнение работы время и последовательность. На графике не видно взаимосвязей выполняемых работ, и поэтому трудно принимать решения об изменении их последовательности.
Ленточный график не показывает взаимосвязей работ, но он более наглядный при использовании его для контроля времени начала и окончания отдельных работ. Эта особенность делает предпочтительным совместное применение сетевого и ленточного графика Ганта.
Предположим, что требуется подготовить производство и изготовить прибор. Сделать это необходимо в кратчайшие сроки, которые должны быть согласованы с заказчиком. Контроль и управление этим проектом менеджер предполагает осуществить с помощью сетевого и ленточного графика Ганта.
Сначала разрабатывается перечень необходимых работ и их взаимосвязи. Затем строится сетевой график (рис. 3.3.9) и, используя экспертные оценки предполагаемых исполнителей, рассчитываются для каждой работы (табл. 3.3.3).