Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Основные операции в математике
Порядок вычисления простых выражений
Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:
Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.
Что первое, умножение или деление? — По порядку слева направо.
Сначала умножение или сложение? — Умножаем, потом складываем.
Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Рассмотрим порядок арифметических действий в примерах.
Пример 1. Выполнить вычисление: 11- 2 + 5.
В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.
Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.
Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?
Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.
Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.
Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.
Например, в такой последовательности можно решить пример по действиям:
Действия первой и второй ступени
В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.
С этими терминами правило определения порядка выполнения действий звучит так:
Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Подставляем полученные значения в исходное выражение:
Порядок действий: умножение, деление, и только потом — сложение. Получится:
10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.
На этом все действия выполнены.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.
Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.
И, как всегда, рассмотрим, как это работает на примере.
В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.
Подставляем полученное значение в исходное выражение:
Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:
Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!
«Математика с нуля. Пошаговое изучение математики для начинающих» – это новый проект, предназначенный для людей, которые хотят изучить математику самостоятельно с нуля.
Сразу скажем, здесь нет лёгких решений и таких заявлений как «Купи эту книгу и сдай математику на 5» или «Освой математику за 12 часов» вы тут не увидите. Математика довольно большая наука, которую следует осваивать последовательно и очень медленно.
Сайт представляет собой уроки по математике, которые упорядочены по принципу «от простого к сложному». Каждый урок затрагивает одну или несколько тем из математики. Уроки разбиты на шаги. Начинать изучение следует с первого шага, и так далее по возрастанию.
Каждый изученный урок должен быть понятным. Поэтому, не поняв одного урока, нельзя переходить к следующему, поскольку каждый урок в математике основан на понимании предыдущего. Если вы с первого раза урок не поняли – не расстраивайтесь. Некоторые люди потратили месяцы и годы, чтобы понять хотя бы одну единственную тему. Отчаяние и уныние точно не ваш путь. Читайте, изучайте, пробуйте и снова пробуйте.
Математика хорошо усваивается, когда человек самостоятельно открыв учебник, учит самогó себя. При этом вырабатывается определенная дисциплина, которая очень помогает в будущем. Если вы будете придерживаться принципа «от простого к сложному», то с удивлением обнаружите, что математика не так уж и сложна. Возможно даже она покажется вам интересной и увлекательной.
Что даст вам знание математики? Во-первых, уверенность. Математику знает не каждый, поэтому осознание того, что вы знаете хоть какую-то часть этой серьёзной науки, делает вас особенным. Во-вторых, освоив математику, вы с лёгкостью освоите другие науки и сможете мыслить гораздо шире. Знание математики позволяет овладеть такими профессиями как программист, бухгалтер, экономист. Никто не станет спорить, что эти профессии сегодня очень востребованы.
В общем, дерзай друг!
Желаем тебе удачи в изучении математики!
Новые уроки будут скоро. Оставайся с нами!
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так
ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.
А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.
5х — 15 + 2 = 3х — 2 + 2х — 1
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
Пример 4. Решить: 4(х + 2) = 6 — 7х.
Пример 5. Решить:
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
Сервисы, которые помогают всем решать задачи. Онлайн-калькуляторы постоянно совершенствуются.
Кусочно-заданная функция
Укажите кусочно-заданную функцию и перейдите к нужному вам сервису, например, к одному из: нахождению интеграла, производной, исследованию и построение графика и др.
Решение уравнений
Это сервис позволяет решать уравнения, в том числе получить подробное решение, а также увидеть решение уравнения на графике.
Решение пределов
Этот сервис позволяет найти предел функции. Также рассматривается подробное решение правилом Лопиталя.
Производная функции
Это сервис, где можно вычислить производную функции, частную производную функции, а также производную неявно заданной функции.
Разложение в ряд
Здесь можно выполнить разложение в ряд Тейлора, Фурье, найти сумму ряда.
Системы уравнений
Позволяет решать системы линейных уравнений методом Крамера, методом Гаусса, а также вообще любые системы уравнений.
Решение неравенств
Решает неравенство, а также изображает решённое неравенство на графике.
Решение интегралов
Это сервис, где можно вычислить определённые, неопредёленные интегралы, а также двойные, несобственные, кратные.
График функции
Это сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции.
Решение систем неравенств
Вы можете попробовать решить любую систему неравенств с помощью данного калькулятора систем неравенств.
Комплексные числа
Здесь можно вычислить комплексные выражения: находить формы (алгебраическую, тригонометрическую, показательную); модуль и аргумент, сопряжённое, геометрическую интерпретацию.
Решение матриц
Таблицы
Использование калькуляторов
В статьях ниже приведены примеры, как использовать калькуляторы в соотв. темах:
Интересные калькуляторы
Здесь приведены новые сервисы, которые помогут вам при решении некоторых задач:
Как пользоваться Контрольная Работа РУ
Здесь приведены последние статьи про использование калькуляторов.
Решение векторов
Теперь Вы можете не тратить свое время на такие простые задачи, как нахождение длины вектора, скалярного произведение векторов, расстояние между двумя точками на плоскости и в пространстве.
Физика онлайн
Физика онлайн позволяет посмотреть физические эксперименты он-лайн!
Теория вероятности
Теория вероятности онлайн позволяет вычислять без проблем математическое ожидание, дисперсию, число перестановок, сочетаний, размещений и факториал.
Другое
Здесь представлены различные онлайн калькуляторы, и в том числе: обычный инженерный математический калькулятор калькулятор онлайн.
Приложения для решения математики: ТОП-7 лучших на 2021 год
Математика – интересная наука, которую уважают и ненавидят. Если говорить о том, как наука применяется в жизни, то человек использует ее повседневно. Числа представлены на циферблате хронометров, в расписании движения транспорта, уроков и пр. Чтобы научиться работать с цифрами, облегчить повседневные цели, можно использовать приложения для решения математики. Представляем семь лучших прог для устройств, базирующихся на ОС Android и iOS.
ТОП-7 лучших приложения для решения математики
1. Photomath
Приложение представлено несложными инструментами. Это камера-калькулятор, который работает посредством модуля на мобильной технике или планшетном компьютере. Посредством софта можно решить простую и сложную задачу, например, квадратное уравнение, логарифм, задачи по тригонометрии, примеры с корнями, степенью и многое другое.
Сильная сторона приложения предоставляет решение задач – это актуально для школьников, студентов, родителей, поверяющих домашнее задание.
2. Geometryx
Программное обеспечение для оперативного расчёта задач по геометрии. Программа высчитывает площадь, периметр, центр тяжести, высоту и другие параметры. Инструмент позиционируется как калькулятор, работающий на базе элементарных теорем. Он работает без лишних действий со стороны пользователя – он быстро выполняет вычисления.
В целом, Geometryx – неплохое приложение для решения примеров по математике с понятным и удобным интерфейсом. Полезно для школьников и студентов, нуждающихся в помощи. Ресурсы приложения помогают справляться со сложными геометрическими задачами и делают предмет более простым.
3. Mathpix
Еще одно приложение для решения математики по фото, способное распознавать рукописный ввод. Продукт разработан для школьников старших классов, студентов высших учебных заведений, преподавателей. В рамках расширенного функционала можно решить:
Как показывает опыт пользователей, софт на отлично справляется с задачами средней сложности. Разработчик регулярно улучшает продукт, внедряя новые возможности.
4. MalMath
Универсальное приложение для решения задач по математике со следующими особенностями:
Софт распознает рукописный ввод. Распознавания информации по фото не предусмотрено. Программа переведена на русский язык, может похвастаться красивым, спокойным оформлением, удобно сформированным меню.
5. MyScript Calculator
Приложение для решения математики для Андроид, созданное в 2013 году. Многим отличается от классического калькулятора. Фишка программы заключается в распознавании рукописных данных.
Управление не обременено кнопками – перед юзером открывается полотно на весь экран. Задачу для решения вводят стилусом или пальцем. Для удобства использования софта разработчик рекомендует применять планшет или смартфон с большим экраном.
Интеллектуальная система распознает информацию, переводит ее в цифровой формат и выдает результат. Алгоритм способен распознавать цифры и буквы, написанные любым подчерком. Для удобства реализована опция отмены, 100% очистки полотна.
6. Mathematics
Калькулятор с расширенным функционалом, подходящий для учёбы и работы. Строит графики, решает корни, степени, чертит графики. Особенно хорошо дела у проги обстоят с функциями. За несколько секунд автоматизированная система выполнит расчёты, покажет значения на графике. Присутствует функция перевода единиц измерения, например, градусы Цельсия в Фаренгейта, метры в километры и пр.
7. Mathway
Востребованное приложение для решения математики, относящееся к категории универсальных. Может работать с несложными школьными примерами и выполнять вычисления высшей математики. Подходит для тех, кто учит алгебру, тригонометрию.
Программа оснащена приятным интерфейсом с простым меню. Дизайн софта чем-то напоминает классический мессенджер. С помощью онлайн чата вводят условие задачи, робот решает ее и присылает ответ. Задачи решают пошагово – пользователь получает развёрнутый ответ на каждом их этапов.
Mathway поддерживает распознавание текста по фото. Эта опция находится в стадии бета-тестирования, но уже в скором времени разработчик обещает довести ее до идеала.
В скрытом меню доступно несколько разделов, включая алгебру, химию, тригонометрию и другое. Кроме этого, реализован калькулятор с расширенными возможностями.