Как решить первообразную функцию

Первообразная функция и неопределенный интеграл

Первообразная

Определение первообразной функции

Можно прочесть двумя способами:

Правила вычисления первообразных

Запомни!

Любая функция F(x) = х 2 + С, где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х.

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Связь между графиками функции и ее первообразной:

Неопределенный интеграл

Определение:

Свойства неопределённого интеграла

Таблица первообразных и неопределенных интегралов

Функция

Первообразная

F(x) + C

Неопределенные интегралы

\int f(x) dx = F(x) + C

Формула Ньютона–Лейбница

Пусть f (х) данная функция, F её произвольная первообразная.

То есть, интеграл функции f (x) на интервале [a;b] равен разности первообразных в точках b и a.

Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке [a;b] функции f, осью Ox и прямыми x = a и x = b.

Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:

Источник

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Вычислить неопределенный интеграл (первообразную).

Этот математический калькулятор онлайн поможет вам вычислить неопределенный интеграл (первообразную). Программа для вычисления неопределенного интеграла (первообразной) не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс интегрирования функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Немного теории.

Первообразная (неопределенный интеграл)

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача — задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) — искомый закон движения. Известно, что s'(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \( s(t) = \frac <2>\). В самом деле
\( s'(t) = \left( \frac <2>\right)’ = \frac<2>(t^2)’ = \frac <2>\cdot 2t = gt \)
Ответ: \( s(t) = \frac <2>\)

Сразу заметим, что пример решен верно, но неполно. Мы получили \( s(t) = \frac <2>\). На самом деле задача имеет бесконечно много решений: любая функция вида \( s(t) = \frac <2>+ C \), где C — произвольная константа, может служить законом движения, поскольку \( \left( \frac <2>+C \right)’ = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s0, то из равенства s(t) = (gt 2 )/2 + C получаем: s(0) = 0 + С, т. е. C = s0. Теперь закон движения определен однозначно: s(t) = (gt 2 )/2 + s0.

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2 ) и извлечение квадратного корня ( \( \sqrt \) ), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием, а обратную операцию, т. е. процесс нахождения функции по заданной производной, — интегрированием.

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у’ = f'(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у’ = f'(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \( x \in X \) выполняется равенство F'(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) — первообразная для f(x), то kF(x) — первообразная для kf(x).

Теорема 1. Если y = F(x) — первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \( y=\frac<1>F(kx+m) \)

Теорема 2. Если y = F(x) — первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \( \textstyle \int F(x)dx \). Сделаем подстановку \( x= \varphi(t) \) где \( \varphi(t) \) — функция, имеющая непрерывную производную.
Тогда \( dx = \varphi ‘ (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\( \int F(x) dx = \int F(\varphi(t)) \cdot \varphi ‘ (t) dt \)

Интегрирование выражений вида \( \textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Источник

Первообразная и неопределенный интеграл, их свойства

Определение первообразной

Определение неопределенного интеграла

Имея заданный дифференциал функции, мы можем найти неизвестную функцию.

∫ f ( x ) d x ‘ = F ( x ) + C ‘ = f ( x )

∫ d ( F ( x ) ) = ∫ F ‘ ( x ) d x = ∫ f ( x ) d x = F ( x ) + C

∫ f ( x ) ± g ( x ) ) d x = ∫ f ( x ) d x ± ∫ g ( x ) d x

Промежуточные равенства первого и второго свойств неопределенного интеграла мы привели в качестве пояснения.

Для того, чтобы доказать третье и четвертое свойства, необходимо найти производные от правых частей равенств:

k · ∫ f ( x ) d x ‘ = k · ∫ d ( x ) d x ‘ = k · f ( x ) ∫ f ( x ) d x ± ∫ g ( x ) d x ‘ = ∫ f ( x ) d x ‘ ± ∫ g ( x ) d x ‘ = f ( x ) ± g ( x )

Производные правых частей равенств равны подынтегральным функциям, что является доказательством первого свойства. Его же мы используем в последних переходах.

Как видите, задача интегрирования представляет собой обратный процесс по отношению к задаче дифференцирования. Обе эти задачи тесно связаны между собой.

Первое свойство может быть использовано для проведения проверки интегрирования. Для проверки нам достаточно вычислить производную полученного результата. Если полученная функция будет равна подынтегральной функции, то интегрирование проведено верно.

Благодаря второму свойству по известному дифференциалу функции мы можем найти ее первообразную и использовать ее для вычисления неопределенного интеграла.

Решение

Используя таблицу производных основных элементарных функций получаем

d ( ln x ) = ( ln x ) ‘ d x = d x x = f ( x ) d x ∫ f ( x ) d x = ∫ d x x = ∫ d ( ln ( x ) )

Ответ: f ( x ) = 1 x = ln ( x ) + 1

Необходимо найти неопределенный интеграл ∫ 2 sin x 2 cos x 2 d x и проверить результат вычисления дифференцированием.

Решение

Используем таблицу производных для тригонометрических функций, получим:

Проверим полученный результат дифференцированием.

В результате проверки мы получили подынтегральную функцию. Это значит, что интегрирование было проведено нами верно. Для осуществления последнего перехода мы использовали формулу синуса двойного угла.

Если таблицу производных основных элементарных функций переписать в виде дифференциалов, то из нее по второму свойству неопределенного интеграла можно составить таблицу первообразных.

Подробнее эту тему мы рассмотрим в следующем разделе «Таблица первообразных (таблица неопределенных интегралов)».

Источник

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Основная информация

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Первообразная некоторой функции находится при помощи операции интегрирования. Последняя является обратной для вычисления производной. Например, существует какое-то выражение Z(p). Его производной является некоторая функция z(р), то есть [Z(p)]’ = z(p). Нахождение Z(p) осуществляется по таблице первообразных или интегралов. Когда такой нет под рукой, то можно применить и таблицу производных. При этом следует учитывать константу.

Табличные значения специалисты не рекомендуют заучивать, поскольку такие действия приводят к потере драгоценного времени. Они считают, что в процессе нахождения интегралов информация отложится в голове. Для начала рекомендуется рассмотреть неопределенный интеграл, а затем переходить к другим его видам.

Применение интеграла

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Интеграл — один из основных элементов высшей математики. Его обозначают «∫». После этого символа следует подынтегральное выражение, которое записывается в следующем виде: (функция)d(переменная). Следует отметить, что совокупность символов «d(переменная)» обозначает, по какой переменной следует осуществлять операцию интегрирования.

При помощи операции поиска первообразной можно находить площади некоторых фигур, величину пути при неравномерном движении и множество других параметров, для которых невозможно применить общие формулы и соотношения.

Алгебраический смысл интеграла заключается в представлении некоторой суммы в виде маленьких слагаемых. Их бывает много видов: неопределенный, определенный, двойной и так далее. Однако конечным результатом является некоторая производная. Следует отметить, что идет строгое разделение по переменным, по которым выполняется интегрирование. В этом случае их нужно классифицировать на два вида: определенный и неопределенный.

Неопределенным интегралом произвольной функции z(p) называется выражение, представленное в виде ее первообразной с учтенной константой Z(p) + C, то есть ∫(z(p)) dp = Z(p) + С. У него отсутствуют ограничения в виде некоторых числовых значений границ. Первообразная находится в общем виде. Во втором случае также следует найти исходную функцию, но по формуле Ньютона-Лейбница подставляются числовые значения. Далее находится конкретная числовая величина.

Чтобы найти первообразную, необходимо руководствоваться некоторыми правилами. Математики рекомендуют их знать, поскольку это поможет в дальнейшем обучении.

Методика нахождения

Существуют определенные правила нахождения первообразных. Для нахождения интеграла простейшей функции необходимо воспользоваться таблицей первообразных (рис. 1). Далее нужно найти соответствующее выражение и записать результат. Однако задания не всегда могут быть простыми, поскольку некоторые выражения следует упростить, а другие — решаются только при помощи формул интегрирования по частям.

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Рисунок 1. Таблица первообразных.

Методика нахождения первообразной для простой табличной функции состоит из двух этапов. Для этой цели следует воспользоваться обыкновенным алгоритмом, который рекомендуют математики всего мира:

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Если первый метод не подходит, то следует воспользоваться формулой первообразной, которая позволяет выполнять операцию интегрирования по частям. Прибегать к такому варианту следует в том случае, когда функция является сложной и ее нет в таблицах производных и интегралов.

Суть соотношения заключается в упрощении сложного выражения и сведении его к табличному значению. Следует отметить, что методика может применяться много раз и без каких-либо ограничений. Специалисты выделили отдельные подынтегральные функции, к которым нужно применять эту методику:

Если по какой-то причине интеграл невозможно взять, то это объясняется только наличием ошибок при интегрировании. Специалисты рекомендуют пересмотреть ход решения или начать его заново. Иногда необходимо осуществить замену подынтегрального выражения, но этот способ не будет рассматриваться, поскольку он является очень сложным.

Геометрический смысл

У интеграла есть определенный геометрический смысл, который заключается в нахождении площади криволинейной трапеции. К последним принадлежат плоские фигуры, ограниченные некоторым заданным графиком, а также прямыми или другими графиками. Основные требования — непрерывность и конечное значение S (площади) должно быть больше нуля. Как правило, в подынтегральную часть идет сама функция, а границами являются значения переменных.

В качестве ограничителей могут выступать также и оси декартовой системы координат. Чтобы вычислить площадь этой фигуры, необходимо выполнить такие операции:

Как решить первообразную функцию. Смотреть фото Как решить первообразную функцию. Смотреть картинку Как решить первообразную функцию. Картинка про Как решить первообразную функцию. Фото Как решить первообразную функцию

Проверив результат при расчетах и на калькуляторе интегралов, можно сделать вывод, что задача решена правильно. Кроме того, следует проверять подынтегральное выражение. Например, если дана функция с корнем четной степени (квадрат, четвертая и так далее), то необходимо указывать, что функция должна быть больше или равна 0.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *