Как решить эту задачу
Как решать логические и математические задачи
Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.
Решаем логические задачи
Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.
Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.
К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.
Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.
Основные методы решения логических задач
Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):
Метод последовательных рассуждений
Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.
Разложи карандаши в описанном порядке.
Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.
Метод «с конца»
Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.
Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.
Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?
Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.
Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.
Решение логических задач с помощью таблиц истинности
Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».
Кто забросил мяч, если только один из троих сказал неправду?
Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.
Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.
Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.
И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.
Значит, правильный ответ – мяч забросил синий.
Метод блок-схем
Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.
Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.
Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!
Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.
Как научиться решать задачи
Ни один человек не умеет с рождения решать математические задачи. Но этому можно и нужно научиться. Чтобы быстро и правильно решать задачи, нужно знать и выполнять несколько важных условий. В этой статье мы расскажем об этих “секретных ингредиентах”, которые позволят ребенку постичь таинство быстрого решения математических задач.
Математика — это нестрашно
Многие дошкольники боятся математики как страшного чудовища, которое мучает непонятными условиями и решениями. Эти страхи навязаны взрослыми, упрекающими своё чадо в нежелании заниматься или ругающими за неверные ответы. Первая задача взрослых — не напугать предметом, а показать, что математика — это нестрашно.
Чтобы “царица наук” приносила только положительные эмоции, каждый день постарайтесь обращать внимание ребёнка на самые простые признаки этого предмета. Математика окружает нас везде: мы считаем в магазине деньги, смотрим номера домов на улице, вычисляем время, которое нам нужно для поездки, и многое-многое другое. В время прогулки с малышом предложите решить вместе весёлую задачку: узнать, сколько шагов до ближайшего дерева или качели. Также обратите внимание ребёнка на пользу математики в решении самых обычных дел.
Если ваш малыш не проявляет интерес к математике и его больше интересуют гуманитарные науки, не стоит огорчаться и принуждать к занятиям. Начните давать посильные задачи: например, пересчитать гостей и принести нужное количество вилок на стол, или определить, в какой тарелке больше фруктов. После выполнения задания обязательно похвалите ребёнка и отметьте, что он отлично справился с задачей. Так малыш поймет важность и необходимость математических знаний.
Выполните развивающие упражнения от Айкьюши
Как решить задачу
Прозвенел первый звонок, и теперь ваш малыш настоящий школьник! Математика — один из самых главных уроков, на котором ребёнка будут ждать цифры, числа, фигуры, примеры и, конечно, задачи. Ведь именно в процессе решения любых математических задач ребёнок развивает логическое мышление, воображение, память, внимание и самоконтроль.
Умение быстро решать задачи для 1 класса по математике — очень важный навык. Освоив его, ребёнок будет легче понимать задачи и в старших классах, поэтому стоит запастись терпением и помочь малышу хорошо разобраться в этом вопросе, чтобы потом он решал задачи по математике самостоятельно. Согласитесь, лучше приложить немного больше усилий в 1 классе, чтобы потом не делать с ребёнком математику все школьные годы?
Алгоритм решения задач
Решать задачи ребёнку придётся всю школьную жизнь, и не только математические, но и по физике, химии, биологии. Именно поэтому с начальных классов стоит усвоить алгоритм решения, который применим к абсолютно любой задаче:
Читаем условие задачи
Первый раз ребёнок читает условие задачи вслух, затем ему нужно ещё раз прочитать задачу внимательно и не торопясь. Чтобы проверить понимание, попросите малыша пересказать условие задачи. Если он что-то забыл, спокойно задайте наводящий вопрос. Очень важно, чтобы у ребёнка не возникало затруднений в представлении объектов задачи. Если малыш не понимает какие-то слова в условии, обязательно расскажите и подробно объясните. Дайте ребёнку возможность прочитать условие столько раз, сколько нужно, не ругайтесь и не нервничайте, а лучше похвалите и подбодрите в этом старании.
Представляем задачу
Разобравшись с условием и усвоив все объекты в задаче, переходите к её схематическому представлению. Это можно сделать в виде рисунка или схемы, используя игрушки и реальные предметы. Например, если речь идёт о вазе с конфетами, можно взять несколько карамелек и разложить их по стаканам. Задачи на движение можно нарисовать схематично: домик, велосипед, дорогу и рядом изобразить знаки вопроса. Чем лучше и нагляднее будет нарисована задача, тем проще будет представить, какие действия нужно сделать для её решения. Возможно, уже в ходе создания рисунка ребёнок сможет решить задачу.
Детям в начале школьной жизни ещё очень сложно представлять задачу только в уме, абстрактно. Малышам гораздо легче и проще решать задачи, когда можно увидеть все объекты на рисунке или потрогать и переложить их. С возрастом ребёнок научится “видеть” задачу в голове, но сначала ему нужно понять, как это делается.
Решение задачи
Теперь можно переходить к решению. “Увидев” задачу, малыш уже может понять, какие действия нужно совершить, чтобы получить ответ. Если ребёнок не смог сразу найти решение, не нервничайте, а начните задавать наводящие вопросы, обращайте внимание на детали и обязательно хвалите. Малыш старается решить, а это уже большое дело! Не концентрируйтесь на текстовом условии, а используйте любые способы: инсценировка задачи, наглядное представление из подручных предметов, схема или рисунок.
Если в задаче нужно выполнить несколько действий, помогите малышу разложить задачу на несколько простых шагов. Такой способ поможет ребёнку увидеть закономерность и последовательность действий.
Записываем решение
Когда малыш уже полностью понял задачу, увидел все действия, которые нужно совершить, только после этого приступайте к записи решения. Подробно записывайте и проговаривайте вслух всё, что фиксируется в тетради. Это поможет ребёнку быстрее запомнить последовательность записи решения.
Если решение состоит из нескольких действий, то после вычислений ребёнку нужно обязательно записывать, что обозначает каждое число, чтобы в итоге не перепутать огурцы с грибами.
Ответ
Как только все вычисления сделаны и записаны, нужно сформулировать и зафиксировать на бумаге ответ. Для этого возвращаемся к условию задачи. Попросите малыша прочитать вопрос в задаче, а потом развернуто дать ответ. Например, если вопрос звучит так: “Сколько яблок съел Дима?”, ребёнку нужно ответить не просто “6 яблок”, а подробно — “Дима съел 6 яблок”, а потом записать этот развернутый ответ в тетрадь. Таким образом видно, что принцип формирования ответа заключается в вопросе, но без использования числительного. Конечно, первокласснику можно объяснить проще: “Вместо слова “сколько” говорим число и получаем развёрнутый ответ”.
Проверка
Задача решена! Похвалите ребёнка за все старания и усилия, ведь он смог решить математическую задачу, но не забывайте о проверке решения. Выполняя проверку, ребёнок учится очень важным навыкам — контролю и самоконтролю.
Не пугайте малыша, что теперь нужно ещё раз что-то решать, просто заинтересованно спросите: “Как ты думаешь, это правильный ответ? Давай проверим!”.
Выполнять проверку можно несколькими способами:
а) Сверка ответа
Самый простой способ — это посмотреть ответ в конце учебника. Но такой способ не всегда хорош и полезен, потому старайтесь пользоваться им нечасто.
б) Прикидка ответа
Прочитав условие задачи, ребёнок прикидывает, в каких пределах должен получиться ответ. Например, решая задачу, где нужно сложить 10 яблок и 15 груш, малыш задаётся вопросом: может ли получиться ответ меньше 10? В этом способе есть свои преимущества, но он менее точный.
в) Решение задачи другим способом
Такой способ хорош для более сложных задач, когда ребёнок уже достаточно хорошо ориентируется в действиях и умеет представлять условие. Однако к этому способу не стоит обращаться в самом начале обучения решению задач.
г) Подстановка результата в условие задачи
Именно так стоит обучать ребёнка проверке решения. Способ подходит для самых лёгких и первых задач по математике 1 класса.
Со временем вы можете показать малышу разные способы проверки решения задач, но не используйте все способы сразу. Это может только запутать первоклассника.
Очень важно, чтобы ребёнок четко усвоил алгоритм решения задач. Для этого старайтесь решать по одной задаче, не смешивая их с примерами или выполнением домашнего задания по другим предметам. Дайте малышу отдохнуть после решения, тогда новая информация хорошо усвоится и не забудется.
На нашем сайте в разделе Решаем задачи и примеры вы найдёте не только задачи и примеры по математике для 1 класса, но и для других классов начальной школы и даже для дошкольников. Ребёнок может выполнять задания как самостоятельно, так и вместе с вами. Кроме этого, малыш может оттачивать математические навыки в тренировке Математик, которая обновляется каждый день.
Также рекомендуем вам нашу статью «Математические головоломки с ответами». Занимайтесь математикой в игровой форме!
Решение задач онлайн
Сервисы, которые помогают всем решать задачи.
Онлайн-калькуляторы постоянно совершенствуются.
Кусочно-заданная функция
Укажите кусочно-заданную функцию и перейдите к нужному вам сервису, например, к одному из: нахождению интеграла, производной, исследованию и построение графика и др.
Решение уравнений
Это сервис позволяет решать уравнения, в том числе получить подробное решение, а также увидеть решение уравнения на графике.
Решение пределов
Этот сервис позволяет найти предел функции. Также рассматривается подробное решение правилом Лопиталя.
Производная функции
Это сервис, где можно вычислить производную функции, частную производную функции, а также производную неявно заданной функции.
Разложение в ряд
Здесь можно выполнить разложение в ряд Тейлора, Фурье, найти сумму ряда.
Системы уравнений
Позволяет решать системы линейных уравнений методом Крамера, методом Гаусса, а также вообще любые системы уравнений.
Решение неравенств
Решает неравенство, а также изображает решённое неравенство на графике.
Решение интегралов
Это сервис, где можно вычислить определённые, неопредёленные интегралы, а также двойные, несобственные, кратные.
График функции
Это сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции.
Решение систем неравенств
Вы можете попробовать решить любую систему неравенств с помощью данного калькулятора систем неравенств.
Комплексные числа
Здесь можно вычислить комплексные выражения: находить формы (алгебраическую, тригонометрическую, показательную); модуль и аргумент, сопряжённое, геометрическую интерпретацию.
Решение матриц
Таблицы
Использование калькуляторов
В статьях ниже приведены примеры, как использовать калькуляторы в соотв. темах:
Интересные калькуляторы
Здесь приведены новые сервисы, которые помогут вам при решении некоторых задач:
Как пользоваться Контрольная Работа РУ
Здесь приведены последние статьи про использование калькуляторов.
Решение векторов
Теперь Вы можете не тратить свое время на такие простые задачи, как нахождение длины вектора, скалярного произведение векторов, расстояние между двумя точками на плоскости и в пространстве.
Физика онлайн
Физика онлайн позволяет посмотреть физические эксперименты он-лайн!
Теория вероятности
Теория вероятности онлайн позволяет вычислять без проблем математическое ожидание, дисперсию, число перестановок, сочетаний, размещений и факториал.
Другое
Здесь представлены различные онлайн калькуляторы, и в том числе:
обычный инженерный математический калькулятор калькулятор онлайн.
КАК РЕШАТЬ ЗАДАЧИ
Рассмотрим план действий, который поможет понять как решать задачи.
🔴 А ТЕПЕРЬ БОЛЕЕ ПОДРОБНЕЕ:
Определите, к какому типу относится задача. Это арифметическая задача? Действия с дробями? Решение квадратных уравнений? Прежде чем приступить к решению, выясните, к какой области математики относится задача. Примеры и виды Залач. показаны ниже) Это важно, поскольку значительно упростит поиск способа решения.
Внимательно прочитайте условие задачи. Даже если задача кажется простой, внимательно изучите ее условие. Не следует приступать к решению задачи, лишь бегло ознакомившись с ее условием. Если задача сложна, вам, возможно, понадобится несколько раз перечитать ее условие, чтобы полностью понять его. Не жалейте времени на это и не приступайте к дальнейшим действиям до тех пор, пока не узнаете точно, что дано в условии и что необходимо найти.
Изложите условие задачи. Для лучшего понимания задачи полезно изложить ее условие своими словами. Можно просто пересказать условие, либо записать его в том случае, если вам неудобно говорить вслух (например, на экзамене). Сравните собственное изложение задачи с ее первоначальным условием, выяснив тем самым, правильно ли вы поняли задание.
Изобразите задачу графически. Если вы считаете, что это поможет, представьте задачу графически — возможно, так легче будет определить дальнейшие действия. Необязательно создавать подробную схему, достаточно набросать условие задачи в общих чертах, указав численные значения. При создании схемы справляйтесь с условием задачи, по окончании сравните готовое изображение с условием еще раз. Задайте самому себе вопрос: «Верно ли мой рисунок отображает задачу?» Если да, можно приступить к решению задачи. Если же ответ отрицателен, перечитайте условие еще раз.
Изучите структуру задачи. Внимательно прочитав условие, вы, возможно, вспомните похожие задачи, решенные вами ранее. Можно построить таблицу с внесенными в нее данными, которая поможет вам определить характер задачи. Отметьте выявленные характерные черты задачи — они помогут вам при ее решении. Не исключено даже, что вы вспомните схожие задачи и сразу получите ответ.
Составление плана решения
Потренируйтесь на более легкой задаче. Если есть более простая задача, похожая на ту, которую необходимо решить, попробуйте свои силы сначала на ней. Предварительный разбор простой задачи, в которой используются те же приемы и формулы, облегчит решение более сложного задания.
Сделайте обоснованное предположение о том, каким должен быть ответ. Прежде чем приступать к непосредственному решению задачи, попытайтесь оценить ответ. Определите величины и другие факторы, влияющие на оценку. Проверьте свои рассуждения, не упустили ли вы чего-либо из виду.
Решение задачи
Придерживайтесь составленного плана. Выполняйте этапы последовательно в том порядке, в котором вы наметили их ранее. Чтобы избежать ошибок, перепроверяйте результат, полученный на каждом этапе.
Сравнивайте полученные результаты с предварительно сделанными оценками. По завершении каждого этапа полезно сравнить его результат со сделанными ранее оценками; сопоставьте также конечный ответ с его предварительной оценкой. Задайте себе вопрос: «Близки ли мои предположения к полученным результатам?» Если ответ отрицателен, подумайте, почему. Проверьте полученные результаты, просмотрев все шаги решения еще раз
Попробуйте другую схему решения. Если составленный вами план не сработал, вернитесь к этапу планирования и разработайте новый план. Не расстраивайтесь в случае неудачной попытки, учеба не обходится без ошибок — наоборот, вы научитесь на своих ошибках и сможете избежать их в дальнейшем. Выявите сделанные ошибки и продолжайте работу. Не зацикливайтесь на ошибках и не огорчайтесь из-за них.
Проанализируйте задачу. Получив правильный ответ, вернитесь к началу и просмотрите решение еще раз. Анализ задачи и ее решения поможет вам в следующий раз, когда вы столкнетесь с подобной задачей. Также вы лучше усвоите использованные методы и приемы, которые обязательно пригодятся вам в дальнейшем
Советы
Какие бывают математические задачи:
ПРОСТЫЕ И СОСТАВНЫЕ ЗАДАЧИ
Простые Математические Задачи состоят из 5 частей:
Обязательно в задаче нужно выявлять ОПОРНЫЕ СЛОВА, ОПОРНЫЕ СЛОВА — это основа краткой записи, их нужно уметь находить для определения главного в задаче.
В вазе 3 белых и 2 розовых гвоздики.
Сколько всего гвоздик в вазе?
В указанной задаче:
Второе опорное слово — розовые, которое в первом классе, сокращаем словом Р, но начиная со 2 класса- Роз.
Третье опороное слово всегда содержится в вопросе.
В данной задаче третье опорное слово — всего, которое в краткой записи заменяется фигурной скобкой с вопросом посередине
Ответ: 5 гвоздик всего в вазе.
Простые задачи решаются одним действием.
Составные задачи решаются двумя и более действиями, разными способами.
У Иры 3 куклы, что в 2 раза меньше, чем у Светы. Сколько кукол у обеих девочек?
• по действиям с пояснениями
1) 3 • 2 = б (к.) — у Светы
2) 3 + 6 = 9 (к.) — у обеих девочек
• по действиям с вопросами
1. Сколько кукол у Светы? 3-2 = б(к.)
2. Сколько кукол у обеих девочек? 3 + 6 = 9 (к.)
Ответ: у обеих девочек 9 кукол.
ЗАДАЧИ НА НАХОЖДЕНИЕ СУММЫ
первое второе сумма
Чтобы найти сумму, надо сложить слагаемые
У балалайки 3 струны, а у контрабаса — 4. Сколько всего струн у этих музыкальных инструментов?
Решение: 3 + 4 = 7 (с.) Ответ: у этих музыкальных инструментов 7 струн.
У Кати 3 книги, что на 2 книги меньше, чем у Иры. Сколько всего книг у девочек?
Решение: 1)3 + 2 = 5 (к.)-у Иры 2) 3 + 5 = 8 (к.) — всего Ответ: всего у девочек 8 книг.
уменьшаемое вычитаемое разность
Чтобы найти разность, надо из уменьшаемого вычесть вычитаемое
У кошки родилось 6 котят. Четырёх котят отдали. Сколько котят осталось?
Решение: 6-4 = 2 (к.) Ответ: осталось 2 котёнка.
У Маши было 4 конфеты. Бабушка дала ей ещё 8 конфет. После обеда девочка съела 3 конфеты. Сколько конфет осталось у Маши?
1) 4 + 8 = 12 (к.) — было у Маши до обеда
2) 12 — 3 = 9 (к.) — осталось после обеда Ответ: у Маши осталось 9 конфет.
ЗАДАЧИ НА НАХОЖДЕНИЕ НЕИЗВЕСТНОГО УМЕНЬШАЕМОГО
уменьшаемое вычитаемое разность
Чтобы найти уменьшаемое, надо к разности прибавить вычитаемое
Когда Вася решил 15 примеров, ему осталось решить ещё 11 при меров. Сколько всего примеров нужно решить Васе?
Решение: 15+ 11 = 26 (п.) Ответ: Васе нужно решить 26 примеров.
Мама решила связать новый шарф. Каждый день в течение неде ли она вязала по 20 см. Какой длины должен получиться шарф, если ей осталось связать ещё 10 см?
1. 20 • 7 = 140 (см) — мама связала за неделю
2. 140 + 10 = 150 (см) — длина шарфа Ответ: шарф должен получиться длиной 150 см.
ЗАДАЧИ НА НАХОЖДЕНИЕ НЕИЗВЕСТНОГО ВЫЧИТАЕМОГО И СЛАГАЕМОГО
Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность
Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое
В журнале 45 страниц, а в книге 155 страниц. На сколько страниц в книге больше, чем журнале?
Решение: 155-45 = 110 (стр.) Ответ: в книге на 110 страниц больше.
Катя собрала 12 больших ромашек и 7 маленьких. Несколько ромашек она подарила бабушке, и у девочки осталось 10. Сколько ромашек Катя подарила бабушке?
1. 12 + 7 = 19 (ром.) — собрала Катя
2. 19 — 10 = 9 (ром.) — подарила бабушке Ответ: 9 ромашек Катя подарила бабушке.
ЗАДАЧИ НА УВЕЛИЧЕНИЕ И УИЕНЬШЕНИЕ ЧИСЛА НА НЕСКОЛЬКО ЕДИНИЦ
Увеличить на… значит прибавить к числу несколько единиц
5 увеличить на 2 = 5 + 2
Уменьшить на значит вычесть из числа несколько единиц
5 уменьшить на 2 = 5 — 2
Новорождённый котёнок весит 100 г, а трёхнедельный — на 200 г больше. Сколько весит трёхнедельный котёнок?
Решение: 100 + 200 = 300 (г) Ответ: трёхнедельный котёнок весит 300 г.
Петя купил 15 шоколадок, а Юра на 3 шоколадки меньше. Сколько шоколадок купил Юра?
Решение: 15-3 = 12 (ш.) Ответ: Юра купил 12 шоколадок
ЗАДАЧИ НА НАХОЖДЕНИЕ ПРОИЗВЕДЕНИЯ
первый множитель второй множитель произведение
Чтобы найти произведение, надо перемножить множители
У котёнка 4 лапы. Сколько лап у пятерых котят?
Решение: 4 • 5 = 20 (л.) Ответ: у пятерых котят 20 лап.
С первого куста смородины собрали 3 кг ягод, со второго — 4 кг, а с третьего — в 2 раза больше, чем с первого и со второго вместе. Сколько килограммов смородины собрали с третьего куста?
1. 3 + 4 = 7 (кг) — собрали с двух кустов
2. 7 • 2 = 14 (кг) —собрали с третьего куста Ответ: с третьего куста собрали 14 кг смородины.
ЗАДАЧИ НА НАХОЖДЕНИЕ ЧАСТНОГО
делимое делитель частное
Чтобы найти частное, надо делимое разделить на делитель
У мамы было 10 мандаринов. Она раздала двум дочкам мандарины поровну. Сколько мандаринов получила каждая девочка?
Решение: 10 : 2 = 5 (м.) Ответ: каждая девочка получила 5 мандаринов.
Бабушка сварила варенье: 9 литров малинового и б литров клубничного. Всё варенье она разлила в трёхлитровые банки. Сколько банок с вареньем получилось?
1. 9 + б = 15 (л) — всего варенья сварила бабушка
2. 15 : 3 = 5 (б) — всего банок Ответ: получилось 5 банок с вареньем.
Задачи на нахождение неизвестного делимого
делимое делитель частное
Чтобы найти делимое, надо частное умножить на делитель
За 2 дня учительнице надо проверить тетради учеников. Она со бирается проверять по 14 тетрадей вдень. Сколько всего тетрадей надо проверить?
Решение: 14 • 2 = 28 (т.) Ответ: всего надо проверить 28 тетрадей.
Переводчик в течение недели переводил по 6 страниц в день. Ему осталось перевести ещё 4 страницы. Сколько всего страниц он перевёл?
1. 6 * 7 = 42 (стр.) — перевёл за неделю
2. 42 + 4 = 46 (стр.) — всего
Ответ: 46 страниц перевёл переводчик.
ЗАДАЧИ НА НАХОЖДЕНИЕ НЕИЗВЕСТНОГО ДЕЛИТЕЛЯ И МНОЖИТЕЛЯ
Чтобы найти неизвестный делитель, надо делимое разделить на частное
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель
Витя собирает марки. Папа подарил ему 20 марок, а дедушка — 15 марок. Все марки Витя разложил в альбом, на 5 страниц поровну. Сколько марок на каждой странице?
1. 20 + 15 = 35 (м.) — всего у Вити
2. 35 : 5 = 7 (м.) — на каждой странице Ответ: на каждой странице по 7 марок.
ЗАДАЧИ НА УВЕЛИЧЕНИЕ ЧИСЛА В НЕСКОЛЬКО РАЗ И МЕНЬШЕНИЕ
Увеличить в… раз значит умножить число
3 увеличить в 2 раза =3-2
Уменьшить в… раз значит разделить число
6 уменьшить в 2 раза = 6:2
Маме 30 лет, а бабушка — в 2 раза старше. Сколько лет бабушке?
Решение: 30 • 2 = 60 (л.) Ответ: бабушке 60 лет.
Масса белого медведя 900 кг, а масса медведицы — в 3 раза меньше. Какова масса медведицы?
Решение: 900 : 3 = 300 (кг) Ответ: масса медведицы 300 кг.
ЗАДАЧИ НА РАЗНОСТНОЕ СРАВНЕНИЕ
Чтобы узнать, на сколько одно число больше или меньше другого, надо из большего числа вычесть меньшее
* На сколько 10 больше, чем 5? 10 — 5 = 5; 10 больше, чем 5, на 5
* На сколько 10 меньше, чем 15? 15 — 10 = 5; 10 меньше, чем 15, на 5
В классе 15 мальчиков и 12 девочек. 22 человека посещают школу, а остальные болеют. На сколько меньше болеющих учеников, чем посещающих школу?
1. 15 + 12 = 27 (чел.) — учатся в классе
2. 27 — 22 = 5 (чел.) — болеют
3. 22 — 5 = 17 (чел.) — на сколько меньше Ответ: болеющих учеников на 17 меньше, чем посещающих школу.
Чтобы узнать, во сколько раз одно число больше или меньше другого, надо большее число разделить на меньшее
• Во сколько раз 10 больше, чем 5? 10 : 5 = 2; 10 больше, чем 5, в 2 раза
• Во сколько раз 5 меньше, чем 15? 15 : 5 = 3; 5 меньше, чем 15, в 3 раза
Машинка стоит 90 рублей, а шоколадка — в 3 раза дешевле. Сколько стоят машинка и шоколадка вместе?
1. 90 : 3 = 30 (руб.) — стоит шоколадка
2. 90 + 30 = 120 (руб.) — стоят вместе Ответ: машинка и шоколадка стоят 120 рублей.
ЗАДАЧИ НА ДЕЛЕНИЕ ПО СОДЕРЖАНИЮ
Фрукты разложили на тарелки, по 4 штуки на каждую. Сколько по надобилось тарелок?
Понадобилось 2 тарелки
Бабушка раздала внукам 15 яблок, по 5 штук каждому. Сколько Внуков у бабушки?
Решение: 15 : 5 = 3 (внуков) Ответ: у бабушки 3 внука.
ЗАДАЧИ НА ДЕЛЕНИЕ НА РАВНЫЕ ЧАСТИ
Детям раздали конфеты поровну. Сколько детей получило конфеты?
Двое детей получили конфеты
Для подготовки школьного спектакля учительница разделила 30 учеников на 5 групп. Сколько учеников в каждой группе?
Решение: 30 : 5 = 6 (уч.) Ответ: в каждой группе по 6 учеников.