Как решить числовой ребус

Статья «Решение числовых ребусов»

Миллионы людей во всех частях света любят разгадывать ребусы. И это не удивительно. “Гимнастика ума” полезна в любом возрасте. Ведь ребусы тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять.

Вся наша жизнь – беспрерывная цепь игровых ситуаций. Они бывают, значительны, а бывают, пустячны, но и те, и другие требуют от нас принятия решений. Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, не чужды им были ребусы и загадки. Таких игр во все времена не чуждались ученые, мыслители, педагоги. Они и создавали их. С древних времен известны головоломки Пифагора и Архимеда, русского флотоводца С.О. Макарова и американца С. Лойда.

Существует такая разновидность ребусов, которые называются числовыми. Они представляют из себя выражения, требующие арифметического решения, составленные в виде математических равенств, где числа заменяются другими знаками – буквами, фигурками геометрии, звездочками и т.д.

Под числовыми ребусами подразумевают те задачки, в которых необходимо использовать логические рассуждения. Именно они являются способом решения и расшифровывания каждого символа, который ведет к восстановлению числовой записи.

Числовым ребусам уже почти тысяча лет. Впервые они появились в Китае, затем в Индии. В европейских странах числовые ребусы поначалу называли крипт-арифметические задачи. Их появление в Европе впервые было отмечено только в двадцатом веке, несмотря на то, что развитие математики началось много столетий назад.

При составлении ребусов числового типа пользуются следующими правилами. Все использующиеся цифры заменяют буквами. При наличии в задаче одинаковых цифр, соответственно, используется такое же количество букв. Промежуточные стадии математических операций обозначаются звездочками. Различают на основе этих правил несколько типов ребусов. Первый – это ребусы, в которых заменены на цифры все имеющиеся буквы. При этом зашифровывается какое-либо выражение, которое обозначает житейские ситуации в оригинальном изложении.

Как решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребусКак решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребусКак решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребусКак решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребус

Как решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребусКак решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребусКак решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребус

Числовые ребусы являются очень сложными, порой попадаются такие, которые требуют поэтапного длительного решения. Числовые ребусы являются увлекательными математическими задачами, которые сильно развивают логику и сообразительность.

Числовые ребусы могут быть составлены из нескольких рядов символов, а между ними ставится определенное количество математических знаков, которые являются указателями для того, какие действия необходимо произвести по вертикали, а какие по горизонтали.

1) ТА+ ИТ = ЛЕТ 2) КРА + ОЛИ = ИАЯ

ЕС х СН = ЛЛАС Л х АР= КЯИ

ЛЕАА + ЕЦ = ЛЕЕЦ ОИИ + АЛ = РКА

Числовые ребусы являются очень популярными не только в школах на обычных уроках, но и на математических олимпиадах. решить числовые ребусы можно с помощью компьютерных программ, однако ни с чем несравнимое удовольствие может получить человек, который самостоятельно ломает голову над разгадкой и в конце концов ее находит.

Задачи, представленные в занимательной форме, очень интересны. Их хочется решать, они увлекают своей необычностью, неочевидностью ответа. Появляется желание совершить пусть даже нелёгкий путь поиска решения. Занимательность и строгость вполне совместимы. Каждое самостоятельно решенное задание – это возможно, небольшая, но всё же победа.

В буквенных ребусах каждой буквой зашифрована одна определенная цифра: одинаковые цифры шифруются одной и той же буквой, а разным цифрам соответствуют различные буквы.

В ребусах зашифрованных, например, звездочками, каждый символ может обозначать любую цифру от 0 до 9. Причём, некоторые цифры могут повторяться несколько раз, а другие не использоваться вовсе.

Перед началом решения математического буквенного ребуса (например, криптарифма), убедитесь, что в нём использовано не более 10 различных букв. В противном случае, такой ребус не будет иметь решений.

Начните решение ребуса с правила, согласно которому ноль не может быть крайней левой цифрой в числе. Таким образом, все буквы и знаки, с которых начинается число в ребусе, уже не могут обозначать ноль. Круг поиска нужных цифр сузится.

В ходе решения отталкивайтесь от основных математических правил. Например, умножение на ноль всегда дает ноль, а при умножении любого числа на единицу, мы получим в результате исходное число.

Очень часто математические ребусы представляют собой примеры сложения двух чисел. Если при сложении сумма имеет больше знаков нежели слагаемые, значит сумма начинается с «1»

Обращайте внимание на последовательность арифметических действий. Если числовой ребус состоит из нескольких рядов знаков, он может решаться как по вертикали, так и по горизонтали.

Не бойтесь совершать ошибки. Возможно, они подскажут вам верный ход решения. Не пренебрегайте методом перебора. Некоторые ребусы потребуют длительного поэтапного решения, но в итоге вы будете вознаграждены верным ответом и отличной разминкой для вашей сообразительности.

Прежде чем приступить к разгадыванию сложных задач, потренируйтесь на простом примере: ВАГОН+ВАГОН=СОСТАВ. Запишите его в столбик, так будет удобнее решать. Вы имеете два неизвестных пятизначных числа, сумма которых шестизначное число, значит В+В больше 10-ти и С равно 1. Замените символы С на 1.

Сумма А+А – однозначное или двухзначное число с единицей на конце, это возможно в том случае, если сумма Г+Г больше 10 и А равно либо 0, либо 5. Попробуйте предположить, что А равно 0, тогда О равно 5-ти, что не удовлетворяет условиям задачи, т.к. в этом случае В+В=2В не может равняться 15-ти. Следовательно, А=5. Замените все символы А на 5.

Сумма О+О=2О – четное число, может быть равна 5 или 15 лишь в том случае, если сумма Н+Н – двухзначное число, т.е. Н больше 6-ти. Если О+О=5, то О=2. Это решение неверно, т.к. В+В=2В+1, т.е. О должно быть число нечетное. Значит, О равно 7-ми. Замените все О на 7.

Легко заметить, что В равно 8-ми, тогда Н=9. Замените все буквы на найденные числовые значения.

Замените в примере оставшиеся буквы на числа: Г=6 и Т=3. Вы получили верное равенство: 85679+85679=171358. Ребус отгадан.

Источник

Как решать математические ребусы

0
SEND
+MORE
MONEY

В разряде единиц отметим сразу отсутствие переноса («0»).

10
SEND
+1ORE
1ONEY

М=1, поскольку сумма двух слагаемых всегда начинается с 1 если знаков суммы (5) больше чем знаков слагаемых (по 4). Также отмечаем перенос 1 из разряда тысяч (S+M=O) в разряд десятков тысяч (M).

10
SEND
+10RE
10NEY

В разряде тысяч S+1(М)=O, причём эта сумма больше 9 т.к. даёт перенос (1 «в уме») в разряд десятков тысяч благодаря которому М=1. В данном случае единственным возможным значением для О=0, поскольку перенос 1 из разряда тысяч в разряд десятков тысяч возможет при S=9 либо S=8 и перенос 1 с разряда сотен. (При S=9 и переносе 1 из разряда сотен О=1, что не допустимо т.к. «1» уже занята «М»).

110
8END
+10RE
10NEY

Мы выяснили, что S=9 либо S=8 и перенос 1 с разряда сотен (E+O=N > 9). Предположим, что S=8, в таком случае в разряде тысяч получаем: 1(перенос из разряда сотен) + 8(S) + 1(M) = 0(O) + перенос 1 в разряд десятков тысяч.

1110
89ND
+10R9
1009Y
100
9END
+10RE
10NEY

Поскольку S не может равняться 8, получаем S=9. Переноса из разряда сотен (E+O=N) нет, поскольку в таком случае в разряде тысяч получим: 1(перенос из разряда сотен)+9(S)+1(М)=1+1 перенос в рязряд десятков тысяч. Т.е. получичли О=1, что не верно т.к. ранее мы выяснили, что М=1.

1010
9END
+10RE
10NEY

Рассмотрим разряд сотен: E+0(О)=N. Очевидно, что это возможно, если «1» переносится из разряда десятков. Причём сама сумма E+0=N меньше 10 т.к. ранее мы выяснили, что переноса в разряд тысяч нет.

1010
923D
+10R2
1032Y

В разряде сотен получаем: 1(перенос из разряда десятков)+Е+0(О)=N. Поскольку ранее мы выяснили, что N 2 (т.к. Е>1). Предположим, что N=3 и соответственно Е=2

10100
923D
+1092
1032Y

Если мы посмотрим на разряд единиц (D+E=Y), то очевидно, что он не даёт переноса в разряд десятков, т.к. максимально возможное значение D=6 (7+2=9-занята, 8+2-10-ноль занят, 9 занята). В разряде десятков получаем R=9, что не верно, т.к. «9» занята

1010
934D
+10R3
1043Y

Вернёмся назад и теперь предположим, что N=4 и соответственно Е=3

10110
934D
+1083
1043Y

Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и перенос из разряда единиц

10110
9347
+1083
10430
1010
945D
+10R4
1054Y

Вернёмся назад и теперь предположим, что N=5 и соответственно Е=4

10110
945D
+1084
1054Y

Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и перенос из разряда единиц

10110
9457
+1084
10541
1010
956D
+10R5
1065Y

Вернёмся назад и теперь предположим, что N=6 и соответственно Е=5

10110
956D
+1085
1065Y

Если мы посмотрим на разряд десятков (N+R=E), то единственное возможное значения для R=8 и наличие переноса из разряда единиц

10110
9567
+1085
10652

В разряде единиц получаем: D=7, Y=2

Решение найдено: 9567+1085=10652. Данный математический ребус имеет единственное решение. Впрочем, имеется возможность повторить всё самостоятельно, без подсказок ► Наверх

Как решить числовой ребус. Смотреть фото Как решить числовой ребус. Смотреть картинку Как решить числовой ребус. Картинка про Как решить числовой ребус. Фото Как решить числовой ребусПолезный совет:

Обращайте внимание на последовательность арифметических действий. Если числовой ребус состоит из нескольких рядов знаков, он может решаться как по вертикали, так и по горизонтали.

Из истории математических ребусов

Математический ребус в русском языке зачастую называют арифметическим, числовым или цифровым. В английском языке также используется несколько названий для обозначения данного вида головоломок: Verbal arithmetic, Alphametics, Cryptarithmetic (Crypt-arithmetic), Cryptarithm или Word addition.

Посетите другие, не менее интересные, разделы нашего сайта:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *