Как решаются тригонометрические уравнения
Как решаются тригонометрические уравнения
Методы решения тригонометрических уравнений.
1. Алгебраический метод.
( метод замены переменной и подстановки ).
2. Разложение на множители.
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
1) tan x = –1, 2) tan x = –3,
4. Переход к половинному углу.
5. Введение вспомогательного угла.
6. Преобразование произведения в сумму.
Решение тригонометрических уравнений — 39 примеров!
Привет, самый лучший ученик во Вселенной!
Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.
И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Тригонометрические уравнения — коротко о главном
Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.
Существует два способа решения тригонометрических уравнений:
Первый способ – с использованием формул.
Второй способ – через тригонометрическую окружность.
Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.
Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:
Если ты что-то не знаешь, повтори следующие разделы:
Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.
Простейшие тригонометрические уравнения
Что же это такое, как ты думаешь? Является ли, например, уравнение
Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции \( \displaystyle \left( sin x,cos x,tg x,ctg x \right)\) в нём и в помине нет!
А что насчёт вот такого уравнения?
И опять ответ отрицательный!
Это так называемое уравнение смешанного типа.
Оно содержит как тригонометрическую составляющую, так и линейную (\( \displaystyle 3x\)).
Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.
Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»
Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!
Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:
Где \( \displaystyle a\) – некоторое постоянное число.
Например: \( \displaystyle 0,5;
\( \displaystyle f\left( x \right)\) – некоторая функция, зависящая от искомой переменной \( \displaystyle x\), например \( \displaystyle f\left( x \right)=x,
f\left( x \right)=\frac<\pi x><7>\) и т. д.
Такие уравнения называются простейшими!
Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!
Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«
Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.
Как часто тригонометрические уравнения встречаются на ЕГЭ?
Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:
Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!
Два способа решения тригонометрических уравнений – через формулы и по кругу
В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.
Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.
Вначале мы начнём с «самых простейших» из простейших уравнений вида:
Я хочу сразу оговориться вот о чем, будь внимателен:
То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:
\( \displaystyle cos\left( 3
\( \displaystyle sin\left( 2<
Корней не имеют.
Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.
Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок.
Для остальных же случаев тригонометрические формулы такие как в этой таблице.
На самом деле в этой таблице данных немного больше, чем нужно.
Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.
Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.
Глядя на таблицу, не возникло ли у тебя пары вопросов?
У меня бы возникли вот какие:
Что такое \( \displaystyle n\) и что такое, например \( \displaystyle arcsin\alpha
Отвечаю на все по порядку:
В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?
ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ.
И число \( \displaystyle n\) и служит для обозначения этой «бесконечности».
Конечно, вместо \( \displaystyle n\) можно писать любую другую букву, только не забывай добавить в ответе: \( \displaystyle n\in Z\) – что означает, что \( \displaystyle n\) – есть любое целое число.
Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, \( \displaystyle arcsin\alpha \) надо как «угол, синус которого равен \( \displaystyle \alpha \)«
Алгоритм вычисления арксинусов и других «арок»
Вот простой пример вычисления аркосинуса:
\( \displaystyle \arccos \left( \frac<\sqrt<3>> <2>\right)\)
\( \displaystyle \frac<\pi ><6>\) и \( \displaystyle \frac<\pi ><3>\).
Если «арка» берется от отрицательного числа?
Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.
Что делать, если «арка» берётся от отрицательного числа?
Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:
И внимание.
Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.
Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.
В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.
Ну всё, теперь мы можем приступать к решению простейших уравнений!
Решение 11-ти простейших тригонометрических уравнений
Уравнение 1. \( \displaystyle sin\left( x \right)=0,5\)
Запишу по определению:
Всё готово, осталось только упростить, посчитав значение арксинуса.
Способы решения тригонометрических уравнений. 10-й класс
Разделы: Математика
Класс: 10
«Уравнения будут существовать вечно».
Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.
1 урок
I. Актуализация опорных знаний
Устно решить уравнения:
1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx =
;
7) tgx =;
8) cos 2 x – sin 2 x = 0
1) х = 2
к;
2) х = ±+ 2
к;
3) х =±+ 2
к;
4) х =к;
5) х = (–1)![]()
+
к;
6) х = (–1)![]()
+ 2
к;
7) х =+
к;
8) х =+
к; к
Z.
II. Изучение нового материала
– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).
Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.
Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.
(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)
1 ученик: 1 способ. Решение уравнений разложением на множители
Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 = 2 sin
cos
2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.
2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение
cos 3x + sin 2x – sin 4x = 0.
Для решения уравнения воспользуемся формулой sin– sin
= 2 sin
сos
cos 3x + 2 sin сos
= 0,
сos 3x – 2 sin x cos 3x = 0,
cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:
Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит
Ответ:
3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму
sin 5x cos 3x = sin 6x cos2x.
Для решения уравнения воспользуемся формулой
Ответ:
4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям
3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,
Пусть sin x = t, где | t |. Получим квадратное уравнение 2t 2 + 3t – 2 = 0,
. Таким образом
.
не удовлетворяет условию | t |
.
Значит sin x = . Поэтому
.
Ответ:
III. Закрепление изученного по учебнику А. Н. Колмогорова
1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. (преобразование произведения в сумму)
(В конце урока показать решение этих уравнений на экране для проверки)
№ 164 (а)
2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 1. Тогда
2 t 2 + t – 1 = 0, t = – 1, t
=
. Откуда
Ответ: –.
№ 167 (а)
3 tg 2 x + 2 tg x – 1 = 0.
Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.
Ответ:
№ 168 (а )
Ответ:
№ 174 (а )
Ответ:
Решить уравнение:
Ответ:
2 урок (урок-лекция)
IV. Изучение нового материала (продолжение)
– Итак, продолжим изучение способов решения тригонометрических уравнений.
5 способ. Решение однородных тригонометрических уравнений
Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.
Получим tg x – 1 = 0.
Ответ:
sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.
tg 2 x – 3tg x + 2 = 0.
Пусть tg x = t. D = 9 – 8 = 1.
тогда
Отсюда tg x = 2 или tg x = 1.
В итоге x = arctg 2 + , x =
Ответ: arctg 2 + ,
Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).
Ответ: arctg 2 + k,
6 способ. Решение линейных тригонометрических уравнений
Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.
Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:
Учитывая, что и
, получим:
Ответ:
7 способ. Введение дополнительного аргумента
Выражение a cos x + b sin x можно преобразовать:
(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)
Введём дополнительный аргумент – угол такой, что
Тогда
Рассмотрим уравнение: 3 sinx + 4 cosx = 1.
Учтём, что . Тогда получим
0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол такой, что
, т.е.
= arcsin 0,6. Далее получим
Ответ: – arcsin 0,8 + +
8 способ. Уравнения вида Р
Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.
Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = . Следовательно получим:
t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим = 1,
=
.
sinx + cosx = 1 или sinx + cosx =
Ответ:
9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.
Решить уравнение:
В соответствии с общим правилом решения иррациональных уравнений вида, запишем систему, равносильную исходному уравнению:
Решим уравнение 1 – cos x = 1 – cos 2 x.
1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.
Условию удовлетворяют только решения
Ответ:
10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.
Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 1, то данное уравнение равносильно системе:
Решение системы
Ответ:
V. Итог урока
Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.