Как решаются эти примеры
Решение простых линейных уравнений
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении: Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа. Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством. Числовой коэффициент — число, которое стоит при неизвестной переменной. Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз: Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем. Как решать простые уравненияЧтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила. 1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный. Для примера рассмотрим простейшее уравнение: x+3=5 Начнем с того, что в каждом уравнении есть левая и правая часть. Перенесем 3 из левой части в правую и меняем знак на противоположный. Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2. Решим еще один пример: 6x = 5x + 10. Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус. Приведем подобные и завершим решение. 2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок. Применим правило при решении примера: 4x=8. При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение. Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица. Разделим каждую часть на 4. Как это выглядит: Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения: Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12 Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах. Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные. Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки. Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе. А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе. Примеры линейных уравненийТеперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе! Пример 1. Как правильно решить уравнение: 6х + 1 = 19. Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1. 5х — 15 + 2 = 3х — 2 + 2х — 1 Ответ: х — любое число. Пример 3. Решить: 4х = 1/8. Пример 4. Решить: 4(х + 2) = 6 — 7х. Пример 5. Решить: Пример 6. Как решить линейное уравнение: х + 7 = х + 4. 5х — 15 + 2 = 3х — 2 + 2х — 1 Пример 7. Решить: 2(х + 3) = 5 — 7х.. Как решать задачи с процентамиСтатья находится на проверке у методистов Skysmart. Основные определенияКогда мы сравниваем разные части целого, мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Это удобно: отрезать половину пирога, пройти треть пути, закончить первую четверть в школе. Чтобы сравнивать сотые доли, придумали процент (1/100): с латинского языка — «за сто». Процент — это одна сотая часть от любого числа. Обозначается вот так: %. Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить число на 100, как в примере выше. А если нужно перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Например: А вот, как перевести проценты в десятичную дробь — обратным действием: Выразить дробь в процентах просто. Для перевода сначала превратим её в десятичную дробь, а потом используем предыдущее правило: Типы задач на процентыВ 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты. Тип 1. Нахождение процента от числаЧтобы найти процент от числа, нужно число умножить на процент. Задача. За месяц на заводе изготовили 500 стульев. 20% изготовленных стульев не прошли контроль качества. Сколько стульев не прошло контроль качества? Как решаем: нужно найти 20% от общего количества изготовленных стульев (500). Из общего количества изготовленных стульев контроль не прошли 100 штук. Тип 2. Нахождение числа по его процентуЧтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа. Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту. Задача. Школьник решил 38 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике? Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 38 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого. 38/0,16 = 38 * 100/16 = 237,5 Значит 237 задачи включили в этот сборник. Тип 3. Нахождение процентного отношения двух чиселЧтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%. Задача. В классе учится 25 человек. 10 из них — девочки. Сколько процентов девочек в классе? Как решаем: возьмем алгоритм из правила выше: 10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 40% В классе учится 10 девочек — это 40%. Тип 4. Увеличение числа на процентЧтобы увеличить число на некоторое количество процентов, нужно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом. Формула расчета процента от числа выглядит так: где a — число, которое нужно найти, b — первоначальное значение, c — проценты. Задача. В прошлом месяце стикер-пак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак? Как решаем: подставим в формулу данные из условий задачи. 110 * (1 + 12/100) = 110 * 1,12 = 123,2. Стоимость стикер-пака в этом месяце — 123 рубля 20 копеек. Тип 5. Уменьшение числа на процентЧтобы уменьшить число на несколько процентов, нужно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа. Формула расчета выглядит так: где a — число, которое нужно найти, b — первоначальное значение, c — проценты. Задача. В прошлом году школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году? Как решаем: подставим в формулу данные из условий задачи. 75 выпускников закончат школу в этом году. Тип 6. Задачи на простые процентыПростые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга. Формула расчета выглядит так: где a — исходная сумма, S — сумма, которая наращивается, x — процентная ставка, y — количество периодов начисления процента. Задача. Родители взяли в банке кредит 5000 рублей, чтобы купить тебе что-то классное. Кредит на год под 15% ежемесячно. Сколько денег они внесут через год? Как решаем: подставим в формулу данные из условий задачи. 5000 * (1 + 12 * 15/100) = 14000 Родители через год внесут в банк 14000 рублей. Тип 7. Задачи на сложные процентыСложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму. Формула расчета выглядит так: где S — наращиваемая сумма, a — исходная, x — процентная ставка, y — количество периодов начисления процента. Задача. Папа взял в банке кредит 25000 рублей на 3 месяца под 15%. Нам нужно узнать, сколько денег придется заплатить банку по истечении срока кредита. Как решаем: просто подставим в формулу данные из условий задачи: 25000 * (1 + 15/100)3 = 38021,875 — искомая сумма. Курсы по математике для учеников с 1 по 11 классы. Вводный урок — бесплатно! Способы нахождения процентаУниверсальная формула для решения задач на проценты:
Чтобы применить алгоритм, нужно прочитать задачу, отметить, какие два числа нам известны и найти третье. Есть еще четыре способа поиска процентов. Рассмотрим каждый из них. Деление числа на 100При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты. Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой? Ответ: выгоднее воспользоваться скидкой 15%. Составление пропорцииПропорция — определенное соотношение частей между собой. С помощью метода пропорции можно рассчитать любые %. Выглядит это так: Читается: a относится к b так, как с относится к d. Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение. Рассмотрим пример. На сколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%? Ответ: купить спортивную футболку выгоднее на 194,6 рубля. Соотношения чиселЕсть случаи, при которых можно использовать простые дроби. Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки? Ответ: средств хватит, так как пиджак стоит 6375 рублей. Задачи на проценты с решениемКак мы уже убедились, решать задачи на проценты совсем несложно. Для закрепления материала рассмотрим реальные примеры на проценты из учебников и несколько заданий для подготовки к ЕГЭ. Задача 1. Организм взрослого человека на 70% состоит из воды. Какова масса воды в теле человека, который весит 76 кг? 76 : 100 = 0,76 — 1% от массы человека Ответ: масса воды 53,2 кг Задача 2. Цена товара понизилась на 40%, затем еще на 25%. На сколько процентов понизилась цена товара по сравнению с первоначальной ценой? Обозначим первоначальную цену товара через х. После первого понижения цена станет равной. Второе понижение цены составляет 25% от новой цены 0,6х, поэтому после второго понижения получим: После двух понижений изменение цены составит: Так как величина 0,55x составляет 55% от величины x, то цена товара понизилась на 55%. Задача 3. Четыре пары брюк дешевле одного пальто на 8%. На сколько процентов пять пар брюк стоят дороже, чем одно пальто? По условиям задачи стоимость четырех пар брюк — это 92% от стоимости пальто Получается, что стоимость одной пары брюк — это 23% стоимости пальто. Теперь умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся в 115% стоимости пальто. Ответ: пять пар брюк на 15% дороже, чем одно пальто. Задача 4. Семья состоит из трех человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза, общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию, общий доход этой семьи уменьшится на 4%. Вычислить, какой процент в общий доход семьи приносит заработок жены. По условиям задачи общий доход семьи напрямую зависит от доходов мужа. Благодаря увеличению зарплаты общий доход семьи вырастет на 67%. Значит, зарплата мужа составляет как раз 67% от общего дохода. Если стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 — это и есть 4%, на которые уменьшился бы семейных доход. Можно составить простую пропорцию и выяснить, что раз 2/3 стипендии — это 4% дохода, то вся стипендия — это 6%. А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой процент составляет заработок жены в общем доходе семьи: 100 – 67 – 6 = 27. Ответ: заработок жены составляет 27%. Задача 5. В свежих абрикосах 90% влаги, а в сухофрукте кураге только 5%. Сколько килограммов абрикосов нужно, чтобы получить 20 килограммов кураги? Исходя из условия, в абрикосах 10% питательного вещества, а в кураге в концентрированном виде — 95%. Поэтому в 20 килограммах кураги 20 * 0,95 = 19 кг питательного вещества. На вопрос задачи мы ответим, если разделим одинаковое количество питательного вещества, которое содержится в разных объемах свежих абрикосов и кураги, на его процентное содержание в абрикосах. Ответ: 190 кг свежих абрикосов потребуется для изготовления 20 кг кураги. Решение задач онлайнСервисы, которые помогают всем решать задачи. Кусочно-заданная функцияУкажите кусочно-заданную функцию и перейдите к нужному вам сервису, например, к одному из: нахождению интеграла, производной, исследованию и построение графика и др. Решение уравненийЭто сервис позволяет решать уравнения, в том числе получить подробное решение, а также увидеть решение уравнения на графике. Решение пределовЭтот сервис позволяет найти предел функции. Также рассматривается подробное решение правилом Лопиталя. Производная функцииЭто сервис, где можно вычислить производную функции, частную производную функции, а также производную неявно заданной функции. Разложение в рядЗдесь можно выполнить разложение в ряд Тейлора, Фурье, найти сумму ряда. Системы уравненийПозволяет решать системы линейных уравнений методом Крамера, методом Гаусса, а также вообще любые системы уравнений. Решение неравенствРешает неравенство, а также изображает решённое неравенство на графике. Решение интеграловЭто сервис, где можно вычислить определённые, неопредёленные интегралы, а также двойные, несобственные, кратные. График функцииЭто сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции. Решение систем неравенствВы можете попробовать решить любую систему неравенств с помощью данного калькулятора систем неравенств. Комплексные числаЗдесь можно вычислить комплексные выражения: находить формы (алгебраическую, тригонометрическую, показательную); модуль и аргумент, сопряжённое, геометрическую интерпретацию. Решение матрицТаблицыИспользование калькуляторовВ статьях ниже приведены примеры, как использовать калькуляторы в соотв. темах: Интересные калькуляторыЗдесь приведены новые сервисы, которые помогут вам при решении некоторых задач: Как пользоваться Контрольная Работа РУЗдесь приведены последние статьи про использование калькуляторов. Решение векторовТеперь Вы можете не тратить свое время на такие простые задачи, как нахождение длины вектора, скалярного произведение векторов, расстояние между двумя точками на плоскости и в пространстве. Физика онлайнФизика онлайн позволяет посмотреть физические эксперименты он-лайн! Теория вероятностиТеория вероятности онлайн позволяет вычислять без проблем математическое ожидание, дисперсию, число перестановок, сочетаний, размещений и факториал. ДругоеЗдесь представлены различные онлайн калькуляторы, и в том числе: Порядок выполнения действий, правила, примерыКогда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения. В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций. Порядок вычисления простых выраженийВ случае выражений без скобок порядок действий определяется однозначно: Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций. Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты. Решение В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения: Решение Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо. Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три. Решение 17 − 5 · 6 : 3 − 2 + 4 : 2 = 17 − 10 − 2 + 2 Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ: 17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7 Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:
Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем. Что такое действия первой и второй ступениИногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение. К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление. Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так: В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении). Порядок вычислений в выражениях со скобкамиСкобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так: Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо. Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером. Решение Теперь нам нужно подставить получившиеся значения в первоначальное выражение: 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2 Начнем с умножения и деления, потом выполним вычитание и получим: 5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6 На этом вычисления можно закончить. Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу. Решение Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним. Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциямиЕсли у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки. Разберем пример такого вычисления. Решение Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание. ( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13 В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.
|
---|