Как решать с нулями
Нули функции
Прежде чем перейти к изучению темы «Нули функции» внимательно изучите уроки
«Что такое функция в математике» и «Как решать задачи на функцию».
Нули функции — это
значения « x » (аргумента функции),
при которых « y = 0 ».
В заданиях «Найдите нули функции» чаще всего сама функция задана через формулу (аналитически). Разберем алгоритм решения подобных задач.
Как найти нули функции, заданной формулой
По традиции разберемся на примере.
№ 260 (1) Мерзляк 9 класс
Найдите нули функции:
Подставим вместо значения функции « f(x) » ноль.
Решаем полученное линейное уравнение и записываем полученный ответ
для « x ».
Перенесем неизвестное « 0,2x » из правой части уравнения в левую с противоположным знаком.
Переведем десятичную дробь « 0,2 » в обыкновненную для упрощения дальнейших расчетов.
2 |
10 |
· x = −3 | · 10
2 |
10 |
· x · 10 = −3 · 10
2 · 10 |
10 |
· x = −30
Ответ: x = −15 является нулем
функции f(x) = 0,2x + 3
№ 260 (5) Мерзляк 9 класс
Найдите нули функции:
Вместо « f(x) » подставим ноль.
В левой части полученного уравнения у нас два множителя:
« x » и « (x 2 − 4) ». Результат их умножения равен нулю.
Это возможно, когда любой из множителей равен нулю. Поэтому рассмотрим оба варианта: когда множитель « x » равен нулю и когда множитель « (x 2 − 4) » равен нулю.
Решаем квадратное уравнение
« x 2 − 4 = 0 ». Используем формулу для решения квадратного уравнения с дискриминантом.
a · x 2 + b · x + c = 0
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
0 ± √ 0 2 − 4 · 1 · (−4) |
2 · 1 |
x1 =
| x2 =
| ||||
x1 = 2 | x2 = −2 |
Запишем все полученные корни уравнений в ответ в порядке возрастания. Они будут являться нулями функции.
Ответ: x = −2; x = 0; x = 2 являются нулями функции f(x) = x 3 − 4x
№ 260 (4) Мерзляк 9 класс
Найдите нули функции:
h(x) =
x 2 − x − 6 |
x + 3 |
Подставим вместо « h(x) » ноль.
0 =
x 2 − x − 6 |
x + 3 |
Перенесем правую часть
x 2 − x − 6 |
x + 3 |
в левую, изменив ее знак на минус.
− (
x 2 − x − 6 |
x + 3 |
) = 0 | · (−1)
x 2 − x − 6 |
x + 3 |
= 0
Единственный вариант, когда дробь будет равна нулю, только если
ее числитель « x 2 − x − 6 » будет равен нулю. Знаменатель « x + 3 » не может быть равен нулю, так как на ноль делить нельзя.
Решим полученное квадратное уравнение через формулу с дискриминантом.
a · x 2 + b · x + c = 0
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−1) ± √ (−1) 2 − 4 · 1 · (−6) |
2 · 1 |
x1;2 =
1 ± √ 1 + 24 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 3 | x2 = −2 |
№ 261 (3) Мерзляк 9 класс
Найдите нули функции:
Заменим « f(x) » на ноль.
Единственное число, квадратный корень которого равен нулю — это сам ноль. Поэтому, квадратный корень
« √ x 2 − 4 = 0 » будет равен нулю, когда его подкоренное выражение « x 2 − 4 » будет равно нулю.
Осталось решить полученное квадратное уравнение, чтобы найти нули функции
« f(x) = √ x 2 − 4 ».
x1;2 =
−b ± √ b 2 − 4ac |
2a |
x1;2 =
−(−0) ± √ (−0) 2 − 4 · 1 · (−4) |
2 · 1 |
x1 =
| x2 =
| ||||
x1 = 2 | x2 = −2 |
Ответ: x = −2; x = 2 являются нулями функции f(x) = √ x 2 − 4
Как найти нули функции на графике функции
Графически нули функции — это точки пересечения графика функции
с осью « Ox » (осью абсцисс).
По определению нули функции — это значения « x »,
при которых « y = 0 ». Другими словами, у точек графика функции, которые являются нулями функции,
координата « x » равна нулю.
Чтобы найти нули функции на графике нам остается, только найти, какая у них координата по оси « Ox ».
Рассмотрим на примере.
№ 255 (1) Мерзляк 9 класс
На рисунке ниже изображен график функции « y = f(x) », определенной на множестве действительных чисел. Используя график, найдите нули функции.
Отметим на графике функции его точки пересечения с осью « Ox ».
Точки « (·)А » и « (·)B » — нули функции. Теперь определим, чему равны их координаты по оси « Ox ».
На графике видно, что у точки « (·)А » координата « x » равна « 0 », а у точки « (·)B » координата « x » равна « 2 ».
Запишем полученные значения координат « x » в ответ.
Ответ: x = 0 ; x = 2 являются нулями функции.
Как найти нули функции, заданной таблицей
В некоторых заданиях, где требуется найти нули функции, сама функция задана не вполне привычно с помощью формулы, а с помощью таблицы. Поиск нулей в таких примерах является легкой задачей.
№ 1.83 (2) Кузнецова 9 класс
Найдите нули функции, заданной таблицей.
x | −2 | −1 | 0 | 1 | 2 | 3 |
y | −3 | −1,5 | 0 | 2 | 1 | 0 |
Вспомним определение нулей функции.
Нули функции — это
значения « x » в функции, при которых « y = 0 ».
Согласно определению нулей функции нам достаточно найти значения « x » в таблице,
где « y = 0 ». Выделим их цветом.
x | −2 | −1 | 0 | 1 | 2 | 3 |
y | −3 | −1,5 | 0 | 2 | 1 | 0 |
Остаётся только записать в ответ значения « x » из таблицы.
Ответ: x = 0; x = 3 являются нулями функции, заданной таблицей.
Действия с нулём
В математике число ноль занимает особое место. Дело в том, что оно, по сути дела, означает «ничто», «пустоту», однако его значение действительно трудно переоценить. Для этого достаточно вспомнить хотя бы то, что именно с нулевой отметки начинается отсчет координат положения точки в любой системе координат.
Ноль широко используется в десятичных дробях для определения значений «пустых» разрядов, находящихся как до, так и после запятой. Кроме того, именно с ним связано одно из основополагающих правил арифметики, гласящее о том, что на ноль делить нельзя. Его логика, собственно говоря, проистекает из самой сути этого числа: действительно, невозможно представить, чтобы некая отличное от него значение (да и само оно – тоже) было разделено на «ничто».
Примеры вычисления
С нулем осуществляются все арифметические действия, причем в качестве его «партнеров» по ним могут использоваться целые числа, обычные и десятичные дроби, причем все они могут иметь как положительное, так и отрицательное значение. Приведем примеры их осуществления и некоторые пояснения к ним.
Сложение
При прибавлении нуля к некоторому числу (как целому, так и к дробному, как к положительному, так и к отрицательному) его значение остается абсолютно неизменным.
Двадцать четыре плюс ноль равняется двадцать четыре.
Семнадцать целых три восьмых плюс ноль равняется семнадцать целых три восьмых.
Вычитание
При вычитании нуля из некоторого числа (целого, дробного, положительного или отрицательного) оставляет его полностью неизменным.
Две тысячи сто пятьдесят два минус ноль равняется две тысячи сто пятьдесят два.
Сорок одна целая три пятых минус ноль равняется сорок одна целая три пятых.
Умножение
При умножении любого числа (целого, дробного, положительного или отрицательного) на ноль получается ноль.
Пятьсот восемьдесят шесть умножить на ноль равняется ноль.
Ноль умножить на сто тридцать пять целых шесть седьмых равняется ноль.
Ноль умножить на ноль равняется ноль.
Деление
Правила деления чисел друг на друга в тех случаях, когда одно из них представляет собой ноль, различаются в зависимости от того, в какой именно роли выступает сам ноль: делимого или делителя?
В тех случаях, когда ноль представляет собой делимое, результат всегда равен ему же, причем вне зависимости от значения делителя.
Ноль разделить на двести шестьдесят пять равняется ноль.
Ноль разделить на семнадцать пятьсот девяносто шестых равняется ноль.
Делить ноль на ноль согласно правилам математики нельзя. Это означает, что при совершении такой процедуры частное является неопределенным. Таким образом, теоретически оно может представлять собой абсолютно любое число.
0 : 0 = 8 ибо 8 × 0 = 0
В математике такая задача, как деление нуля на ноль, не имеет никакого смысла, поскольку ее результат представляет собой бесконечное множество. Это утверждение, однако, справедливо в том случае, если не указаны никакие дополнительные данные, которые могут повлиять на итоговый результат.
Таковые, при их наличии, должны состоять в том, чтобы указывать на степень изменения величины как делимого, так и делителя, причем еще до наступления того момента, когда они превратились в ноль. Если это определено, то такому выражению, как ноль разделить на ноль, в подавляющем большинстве случаев можно придать некий смысл.
Как найти нули функции?
Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.
На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.
Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства
Остановимся подробнее на свойствах функций.
Нули функции
Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.
На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.Внимание!
Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.
График функции у=k/x выглядит следующим образом: По данному рисунку видно, что нулей функции не существует.Как найти нули функции?
Рассмотрим примеры нахождения нулей функции. Пример №1. Найти нули функции (если они существуют):
а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22
б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0.
Значит, нули функции это числа (-76) и 95.
Пример №2. Найти нули функции у=f(x) по заданному графику.
Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.
Промежутки знакопостоянства
Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.
Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).
Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.
Возрастание и убывание функции
Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.
Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Метод интервалов: примеры, решения
Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.
Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.
Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.
Алгоритм
Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f(x) или ≥). Здесь f(x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:
произведение линейных двучленов с коэффициентом 1 при переменной х;
произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.
Приведем несколько примеров таких неравенств:
Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:
Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.
При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.
Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.
Научные основы метода промежутков
Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале (a, b), на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей (−∞, a) и (a, +∞).
Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.
Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток (−∞, −1). Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t
Делить на ноль — это норма. Часть 2
В прошлой части мы расширяли алгебру и смогли делить на ноль арифметически. В качестве бонуса, способ оказался не единственным. Однако, все эти алгебры не дали ответа на вопрос: “Что там внутри или почему нам это не показывают?”
Пока древние вязали узелки, такой вопрос возникнуть не мог. Сейчас, куда не глянь, “бла-бла, для а≠0”. Значит ответ затаился где-то между узелками и настоящим. В математике все строго и последовательно, а значит и ответ не мог потеряться.
Мы попробуем приблизиться к ответу настолько близко насколько это возможно. Эта часть практически полностью посвящена философии арифметики. Скорее всего часть материала будет для Вас тривиальной. Однако у нас тут не повтор школьного курса арифметики.
Материал построен так, чтобы выделить структуру арифметики. Мы будем вгрызаться в нее с разных сторон и отрывать слои. Цель — понять, что на чем лежит.
2. Истина где-то рядом
2.1 Зачем вообще напрягаться?
Чтобы снова броситься в дебри, хотелось бы понять, почему этот вопрос периодически возникает и ради чего стоит искать ответ.
Давайте вспомним школьные годы, то время, когда нам впервые сказали: “На ноль делить нельзя, — вот так вот категорично. — Нельзя и все!”. А ведь до того в математике все было логично и последовательно. Складывали арбузы и вычитали дыни, яблоки перекатывали. Откуда не возьмись, на самом старте изучения математики, появился первый запретный плод.
Но система образования не щадит никого (пруф). Нет другого выхода, кроме как идти дальше и осваивать новые знания. В голове происходит “скачок знаний”, как будто тысячелетие эволюции математики было пропущено. И это только начало.
«… не нужно проявлять лишней поспешности, нужно дать время ученику освоиться с тем внутренним переворотом, который в нем совершается в результате акта познания”, — Ф. Клейн, “Элементарная математика с точки зрения высшей”
В старших классах, откуда ни возьмись, появляются формулы окружности и треугольников, дискриминант, тригонометрические тождества и т.п. Что их объединяет? Все они пришли сверху, совершенно неизвестно откуда. Их нужно просто использовать, в худшем случае зазубрить.
Оказавшись в ВУЗе, большинство, вместо возвращения к пропущенному материалу, изучает «вышку» с уклоном в специальность. Объем формул, пришедших свыше, уже совершенно не смущает.
Да, систему образования понять можно. Специалисту платят за результат, а не за то что он знает откуда экспонента в его расчетах.
В итоге мы не приходим к выводам, так как это делают математики. В момент “скачка знаний”, то есть когда мы отбрасываем часть логических цепочек, вершится таинство. Мы принимаем на веру то что нам говорят. Учебник превращается в священное писание!
Запрет деления на ноль — это первый и самый навязчивый запрет математики. Поэтому он запоминается на всю жизнь. Это так же педагогическая проблема, которая оставляет отпечаток на всю математику, как на “тайну покрытую мраком”. Это сложная проблема, по сравнению с ней найти большинство пропущенных логических цепочек не составляет труда.
Превратить священное писание назад в учебник можно. Причина запрета должна стать строго определенной. Задача педагогов преподнести ее ясно. Наука не должна сеять сомнения.
2.2 Что такое деление?
Деле́ние (операция деления) — одно из четырёх простейших арифметических действий, обратное умножению. Деление — это такая операция, которая считает сколько раз одно содержится в другом.
Похоже, самое полезное, что мы здесь нашли — это связь между операциями. Можно сказать что деление — вино третьего отжима, умножение и вычитание — второго, а сложение — первого. Возможно, именно по этой причине деление стало давать сбой при работе с нулем.
2.3 Порождающие операции
Итак, только операция сложения содержит правило о том, как по двум исходным аргументам (слагаемым) определить результат операции (сумму). Все остальные арифметические операции используют данное правило (соответствие чисел), но вдобавок накладывают свои “дополнительные условия”.
Определение результата операции, в общем случае, задача не тривиальная.
Все прямые операции обладают одним свойством. Они являются замкнутыми. То есть тип результата полностью определяется типами входных чисел (невозможно получить из произведения двух целых чисел дробный результат).
Обратные операции являются замкнутыми только частично (значение корня из целого числа может оказаться целым числом, а может и не оказаться). В тех случаях, где подобрать результат не удается операция оказывается не определена. Данную проблему издавна решают простым способом: рассматривают получившуюся запись операции и числа как новый тип чисел: .
Таким образом, можно сказать что обратные операции и “порождают” новые типы чисел.
Деление одна из порождающих операций. Возможно, в процессе рождения что-то пошло не так и новорожденный получил травму. Для того чтобы ответить на это вопрос нужно понять откуда взялось деление и откуда взялся ноль.
2.4 Эволюция арифметики
Попробуем структурировать наше представление об арифметических операциях и порождаемых ими типах чисел. Для наглядности представим один из вариантов, как может идти эволюция арифметики.
2.4.1 Область определения
Мы в пещере. С умением считать никто не родился. Однако в процессе “созерцания” появилось понимание, что такое понятие “количество”. То есть мы знаем что два мамонта и два яблока имеют нечто общее и можем это выразить, загибая пальцы. Соответственно ничего, кроме натуральных чисел на этом этапе мы не знаем.
Множество натуральных чисел помечено звездочкой “*” для однозначности. Здесь и далее подчеркивается отсутствие понятия “ноль”.
Есть несколько формальных определений последовательности натуральных чисел. Мы возьмем за основу аксиомы Пеано. Примечательно что эти определения не были описаны древними. Они появились только в 19 веке, а после прошли процедуру уточнения (в первоначальном варианте их было девять, в современном виде уже пять).
Рассмотрим формальные определения и их суть в рамках нашей задачи (традиционное словесное описание можно найти на Википедии):
Например. Для чисел 2 и 3, верно что между ними есть один средний элемент 2.5, для 3 и 4 это 3.5 и т.д. Делаем вывод, между любыми соседними натуральными числами есть средний элемент и он единственный.
Какой вывод можно сделать из этих аксиом? Вводится запрет на закольцованность в любом виде (глобальную или локальную). Запрет на закольцованность всегда требует наличие следующего элемента. Так появляется математическое понятие “бесконечность” основанное на понятии «количество”. Понятие “бесконечность” не может существовать без понятия „количество”.
Довольно часто за “стартовый элемент” в аксиомах Пиано берут ноль. Почему так делать нельзя, будет раскрыто при описании операции “вычитание” (уже совсем скоро).
Функция следования не использует операцию сложения в прямом смысле этого слова. Это фундаментальная функция, которая используется как для построения множества натуральных чисел, так и для формального определения операции сложения.
То есть и числа и арифметические операции определены при помощи функции следования.
Функция следования входит в класс примитивно рекурсивных функций, рассматриваемых в теории алгоритмов. Как известно, понятие рекурсия не содержит требования ее конечности (достижимости терминальных ветвей), а значит она так же неявно определяет понятие “бесконечность”.
2.4.2 Сложение
Первая операция, возникшая в ходе нашей эволюции. Как целые пальцы не загибай, результат будет целым. Разве что у вождя сумма пальцев может быть чуть больше чем у всех остальных. Если пальцев не хватает, всегда можно позвать научного ассистента по пещере и расширить разрядную сетку.
2.4.2 Вычитание
В четверг охотники подстрелили 12 мамонтов. За пятницу съели 5 штук. Сколько мамонтов осталось?
Задача хорошо решается путем введения разгибания пальцев. Но подход работает не всегда. Например, чтобы оценить запасы на выходные охотник загибает семь пальцев за остаток, разгибает пять пальцев за субботу (норма расхода в день) и “пытается” разжать за воскресенье.
В этот момент между “try” и “catch” возникает ArithmeticException. Результат оказывается не определен. Наша операция определена только для случая, когда уменьшаемое больше вычитаемого.
Однако определение вычитания не накладывает никаких ограничений. Чтобы избавиться от требования “a > b” введем “правило перестановки”. То есть позволим менять местами уменьшаемое и вычитаемое. Но чтобы тождество оставалось верным результат нужно пометить каким-то маркером, например знаком “минус”. Всякие маркеры для математики — дело обычное (например, признак отсутствия нуля у ).
За счет вспомогательной операции “перестановки” мы подошли к первой абстракции — “отрицательные числа”. Пометка в виде знака “минус” у натурального числа есть ничто иное как признак отложенного вычитания (но это только пока).
У нас остался всего один не определенный случай, когда уменьшаемое и вычитаемое равны. Если мы захотим определить его, то нам придется ответить на вопрос что такое понятие “ничто”. Хотя к чему все эти сложности, обозначим “ничто” символом “0” (позже вникнем по полной).
Осталось зафиксировать наше решение в виде “правил сложения/вычитания нуля”. Они следуют из определения нуля после пары нехитрых перестановок:
Посмотрим, насколько хорошо работают введенные правила. Решая уравнения, мы по двум известным числам всегда можем найти неизвестное третье. Совершенно неважно в какой части уравнения оно стоит, решение всегда однозначно.
Отрицательные числа появились в результате перестановки, ноль же заполнил “ничто”. Отрицательные числа и ноль рождены разными способами. Далее мы будем рассматривать две ветви эволюции: отдельно всех чисел без нуля и отдельно ноль.
2.4.3 Умножение
Умножение по определению является сокращенной записью сложения. Умножая натуральные числа, результат может быть только натуральным. На этом этапе эволюции для нас польза от определения заканчивается.
Для отрицательных чисел в определении нет ни слова о том как их перемножать. Эти правила сформировались постепенно в ходе решения прикладных задач. В современной трактовке они известны как дополнение к умножению в виде “правил знаков”. Они определены настолько хорошо, что применяя их к целым не нулевым числам, операция остается замкнутой.
В случае нуля ситуация отличается кардинально. Вводится еще одно правило “правило умножения нуля“ (умножение любого числа на ноль дает ноль). Но новым это правило только кажется. Ввести какое либо иное правило мы не можем. Определение умножения жестко связывает нас со сложением. Раскрывая умножение через сложение, мы используем “правила сложения/вычитания нуля”, соответственно ничего кроме нуля мы получить не можем.
2.4.4 Деление
Деление — операция обратная умножению. В уравнениях с положительными и отрицательными числами появляется возможность подстановки не кратных чисел.
Как следствие операция порождает “рациональные числа”.
Чтобы вписать их в арифметику, в комплекте идут “правила действий с обыкновенными дробями”. К счастью, эти правила гармонично сосуществуют с введенными нами ранее “правилами знаков”. В итоге в уравнениях сохраняется возможность определить по двум известным числам неизвестное при любой расстановке.
В случае нуля его можно умножать на рациональные числа. На этом всё, гармония закончилась! Только для двух из трех видов уравнений с произвольными числами решение может быть найдено.
Во-первых, появилась возможность составить уравнение с настолько не удобными числами, что мы не сможем подобрать ни одного решения. Решение “не возможно”.
Во-вторых, появилась возможность составить уравнение в котором есть бесконечное множество решений. Выбрать какое-то одно из них так же невозможно. Решение “не однозначно”.
Несложно догадаться, корень проблемы деления на ноль лежит в “невозможности” и “неоднозначности” умножения нуля. Умножение, в свою очередь, ретранслирует “правила сложения/вычитания нуля”. По сути можно задать уравнения, обладающие такими же свойствами, используя только сложение.
В обоих уравнениях нужно определить количество нулей, которые нужно сложить чтобы получить произвольное число или ноль.
Деление не привнесло чего-то качественно нового. Произошла трансформация “невозможности” и “неоднозначности” сложения в конкретные сущности, в неопределенности вида 1/0 и 0/0 соответственно.
Получается что деление, как первый подозреваемый, не виновато в том что на ноль делить нельзя.
Пока не существует понятия “ноль” все операции, включая возведение в степень и взятие корня (логарифмирование), хорошо замкнуты (уже правда на комплексных числах) и арифметика работает великолепно. Но есть одно “но”, при такой конфигурации арифметики операция вычитания, оказывается определена не полностью.
После введения нуля сложение и вычитание неплохо работает. Для остальных операций он скорее повод для установки костылей (), нежели равноправное число.
2.5 Что такое ноль?
Отсутствие породившей операции качественно отличает ноль от всех остальных чисел.
Для того, чтобы была ясна связь не рассмотренных нами типов чисел с операциями, продолжим, максимально кратко, тему эволюции. Мы остановились на делении. Комплексные числа и часть иррациональных порождаются операцией взятия корня (логарифмированием) над отрицательным числом. Прочие иррациональные (число Пи и число Эйлера) появляются за счет введения бесконечных сумм и бесконечных умножений. Мнимые единицы кватернионов даны по определению и не выведены арифметически. Соответственно, инородны в рамках эволюции чисел.
На последнем пункте стоит остановиться поподробнее. Попробуем представить не абсолютный ноль.
Допустим, у нас есть мамонт. Для его перевозки нужна тара. Если положить мамонта в тару, а потом вытащить, то в таре окажется “ничто” (прям как на картинке со спичкой выше). Однако тара для двух мамонтов несколько отличается от тары для одного. В случае кражи есть основание выставлять обвинение в соответствии с размером оставшейся тары. А значит, существуют ситуации когда одно “ничто” другому “ничто” рознь.
Может ли “ничто” быть разным или “ничто” есть единая и абсолютная сущность? Это вопрос на который невозможно дать ответ. Аналогичен и бессмысленен спор на тему есть ли Бог, а и есть то единый он или их много. Ответа на этом свете мы не узнаем.
Таким образом, на самом дне арифметики, там где не существует ни натуральных чисел, ни сложения (а значит и прочих операций), существует ноль.
Хорошо, ответа на вопрос сколько должно быть нулей арифметика дать не может. Мы пользуемся одним нулем. В колесах, рассмотренных в первой части, использовалась арифметика с бесконечным количеством нулей. А может ли быть конечное число нулей, но больше одного.
Может и такие арифметики успешно используются. Один из ярких примеров арифметика со “знаковым нулем”, реализованная в JavaScript.
Введение знакового нуля является еще одним вариантом расширения числовой прямой. В общей топологии существует очень близкое (но не тождественное) пространство “линия с двумя началами” (не хаусдорфово).
Однако и эта арифметика грешит неопределенностями.
Можно сделать вывод, что неопределенности в арифметике будут сохраняться до тех пор, пока количество нулей конечно.
По большому счету неважно как мы будем относиться к нулю. Нужен ли нам единый и абсолютный ноль, а может парочка или вообще бесконечное количество, арифметика всегда сможет под нас подстроиться.
2.6 Бесконечность наше всё
Напоследок, хотелось бы представить хотя бы один вариант числовой оси содержащей бесконечное количество нулей (данный пример описывает концепцию и не претендует на математическую строгость).
Для вычитания, когда уменьшаемое и вычитаемое равны, вместо ввода нуля определим операцию “сокращения”. То есть разрешаем вычеркивать эквивалентные выражения с противоположным знаком. Но если мы сократили все, то результат уже не пригоден к дальнейшему использованию.
Отсчет в числовой оси начнем с единицы (от первого числа зародившего понятие “количество”). Для генерации остальных чисел воспользуемся бесконечной последовательностью, определенной функцией следования (она же использована в аксиомах Пеано). Это будет наш эталонный генератор бесконечной последовательности.
Чтобы получить очень маленькое число при помощи функции следования нужно затратить столько же сил сколько и на генерацию очень большого. Используем функции f(x)=1/x и f(x)=x. Приводить в десятичный вид рациональную дробь задача не стоит, соответственно вычислительная сложность функций одинакова.
Так как ни “абсолютный ноль“ (отмечен символом ноль), ни »потенциальная бесконечность» (отмечена символом беззнаковой бесконечности) недостижимы, ось растет из единицы бесконечно в обоих направлениях (масштаб неравномерный).
При определении вычитания определено “правило перестановки”. Мы же, в свою очередь, делаем копию нашей прямой и отображаем ее зеркально. Числа-близнецы и недостижимые для них пределы помечаем знаком “минус”. Положительная прямая, не соединена с отрицательной. Переход из одной прямой в другую выполняется только за счет “правила перестановки”.
Для наглядности изобразим полученную числовую прямую в виде круга. Так же, как мы делали при проективном расширении. Однако, предельные значения не смыкаем (компактификацию не выполняем). Данная трансформация смысловой нагрузки не несет и выполнена только для улучшения восприятия.
Теперь мы готовы к самому главному. Выполним переход от единой потенциальной бесконечности к бесконечному множеству актуальных бесконечностей (аналогичный подход используется в нестандартном анализе).
Будем относится к бесконечно большим величинам как к полноправным числам. За эталонную актуальную бесконечность возьмем “скорость” с которой функция следования достигает любого произвольного числа. Обозначим это число . Не стоит его путать с потенциальной бесконечностью
, она все так же недостижима.
Для получения различных актуальных бесконечностей будем использовать понятие предела функции при стремлении к числу . Мы не будем отбрасывать бесконечно малые (низшего порядка) и не будем поглощать константы бесконечно большими величинами, как это принято в классическом анализе. Мы будем сохранять всю информацию, составляющую число. Соответственно, у нас появляется возможность сравнения бесконечно больших чисел.
Возводя число в отрицательные степени, мы получаем бесконечно малые числа. По сути это и есть наше бесконечное множество нулей, которые можно сравнить между собой и использовать в арифметике (в отличие от бесконечно малой величины в классическом анализе).
С точки зрения общей алгебры, наша алгебраическая система, не является полем, так как отсутствует ноль (нейтральный элемент). Нестандартный анализ оперирует аналогичными актуальными бесконечностями, они называются гиперреальными числами. Ноль (нейтральный элемент) является одним из гиперреальных чисел. Соответственно алгебраическая система нестандартного анализа оперирует полем.
Наша эталонная бесконечность представляет собой одно из чисел нестандартного анализа. Однако, вместо упрощенного понятия “скорость”, в нестандартном анализе числами являются классы эквивалентности бесконечных последовательностей. Так как в нашем концепте все алгебраические операции можно выразить через функцию следования, значит любую актуальную бесконечность, образованную арифметически, можно выразить через
.
По факту пределы практически перестают упрощаться, в том виде к которому мы привыкли. Сейчас мы просто производим замену переменной на . Правило Лопиталя так же не применимо. В первой части было показано как в классике, при определении производной, отбрасывается бесконечно малая величина. Однако стоит отметить, понятие предела в нестандартном анализе все же существует, но определено несколько шире.
Если возникнет практическая необходимость, можно определить операцию вычитания и для равных чисел (вместо “сокращения” определенного нами выше). Например, это может быть число низшего порядка, нежели исходные числа (аналог уравнения из колеса). Арифметика окажется замкнутой. Но нужно отдавать себе отчет, что сумма двух двоек тут же окажется равной четырем с хвостиком. Это чем-то похоже на сложение скоростей в теории относительности. Еще один пример, термодинамика и понятие абсолютного нуля температуры. Остановив молекулы, атомы продолжают движение. Остановив атомы, кварки все еще двигаются и т.д. Погружение бесконечно.
Эпилог
Мы находимся между прошлым и будущим, между микро и макро миром. Во всех областях рано или поздно мы находим предел за который мы не сможем зайти и это нормально.
В математике все не так. Нам говорят что ноль — это число. Затем ставят его в один ряд со всеми остальными числами. Затем нам говорят, длина пути от минус единицы до единицы равна двум. И в этот момент наше сознание окончательно растворяет ноль среди остальных чисел.
Мы не можем делить на ноль, потому что забыли что однажды смешали понятие “ничто” и понятие “количество”.