Как решать рациональным способом
Рациональные приёмы вычислений на уроках математики
Разделы: Математика
Класс: 4
Ключевые слова: математика
«Мозг хорошо устроенный ценится больше,
чем мозг хорошо наполненный.»
Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.
Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро. Считать в уме можно только при большом желании и систематической тренировки. И тогда перед вами откроется совсем другая математика: живая, полезная, понятная.
Скажите, пожалуйста, как рациональнее сложить 1+ 7, 4 * 8? Какие законы применили?
27 + 46+13? 27 – 19 – 7? Какие свойства, законы? Т.е основы рациональных приёмов вычислений основаны на чём?
Методика преподавания математики в начальных классах раскрывает основы рациональных приёмов вычислений, связанных с выполнением разных математических действий с натуральными числами.
Рациональные приёмы сложения основываются
1. Коммуникативный закон сложения а +в =в +а
2. Ассоциативный закон сложения а+в+с = а+ (в+с)
на коммуникативном и ассоциативном приёмах сложения, а так же свойствах изменения суммы. Рассмотрим некоторые из них.
Свойства сложения.
а+в+с =У, то (а – к) +с+в = У –к
а+в+с=У, то (а+ к) +в +с = У+к
38 + 24+15 = 77, то 40+ 24 + 15 =?
Какие ещё рациональные приёмы сложения можно применить на уроке математики?
Округление одного из слагаемых; поразрядного сложения; приём группировки вокруг одного и того же «корневого» числа.
Рассмотрим эти приёмы:
13 + 49 + 76 + 61 = (поразрядное сложение)
38 + 59 = 38 + (…округление слагаемого)
26 + 24 + 23 +25 + 24 = (группировка вокруг одного и того же «корневого» числа
Все приёмы рациональных вычислений, связанных с вычитанием, основываются на законах вычитания.
Если уменьшаемое увеличить или уменьшить на число, то соответственно разность увеличится или уменьшится на это же самое число
74 – 28 = 46, то 77 – 28 = 49
74 – 28 = 46, то 71 – 28 = 43
Если вычитаемое увеличить или уменьшить на несколько единиц, то разность измениться в противоположную сторону.
Если уменьшаемое и вычитаемое уменьшить или увеличить на одно и тоже число, то разность не измениться.
Найди верные равенства.
229 – 36 = (229 – 9 ) – ( 36 – 6)
174 – 58 = (174 – 4) – ( 58 – 4)
358 – 39 = ( 358 – 8 ) – (39 – 8)
617 – 48 = ( 617 – 7 ) – (48 – 8)
Для рациональных вычислений используют частичные приёмы умножения и деления.
Приём замены множителя или делителя на произведение.
75 * 8 = 75 * 2*2*2=
960 : 15 = 960 : 3 : 5 =
Приём умножения на 9, 99,999, 11 …
87 * 99 = 87 * 100- 87 = 8700 – 87 = 8613
87 * 11 = 87 *10 + 87 = 870+ 87 = 957
Успешное применение различных приёмов зависит от умения подмечать особенности чисел и их сочетаний. Например, познакомив детей в первом классе с натуральным рядом чисел и имея его перед глазами, легко закрепить состав числа.
0 1 2 3 4 5 6 7
Отработав, таким образом, состав чисел в пределах 10 и познакомившись с переместительным законом сложения, дети легко справляются с заданием найти сумму чисел в пределах 10, а в дальнейшем, используя переместительное и сочетательное свойство сложения, легко можно найти сумму других чисел. Например:
Существуют приёмы на знаниях некоторых свойств чисел или результатов действий. Легко находить сумму последовательных нечётных чисел, начиная с 1.
Она равна произведению количества слагаемых на самого себя. (проверить)
Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия. Для этого очень важно научить детей внимательно рассматривать условия задания, суметь подметить все его особенности. Такие задания, как поставь нужный знак действия16 … 17 = 33 ( рассуждать), далее подобные задания усложняются. 8…6…33 = 15
Сравни, не вычисляя
51 : 3 … 30 : 3 + 21 :5
636 :6 … 600 : 6+ 30 : 6+ 6 :6
Используй рациональные приёмы вычисления, разгадай слово
Какие приёмы использовали?
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приёмы, помогающие значительно облегчить процесс вычисления.
СЧЁТ НА ПАЛЬЦАХ: способ быстрого умножения чисел первого десятка на 9. Допустим нам надо умножить 7 на 9. Повернём ладошки к себе, загнём седьмой палец, число пальцев слева от загнутого пальца – это число десятков, а число – справа, количество единиц.
Все задания, которые рассматривались, воспитывают интерес к математике, развивают их математические способности. Такую работу можно продолжать на математическом кружке.
Действия с рациональными числами: правила, примеры, решения
Ниже рассмотрим правила основных математических действий над рациональными числами: сложение, вычитание, умножение и деление. Разберем теорию на практических примерах.
Действие сложения рациональных чисел
Рациональные числа содержат натуральные, тогда смысл действия сложения рациональных чисел сопоставим со смыслом сложения натуральных. Например, сумму рациональных чисел, записанную как 5 + 1 4 возможно описать следующим образом: к 5 целым предметам добавили четверть такого предмета, после чего полученное количество рассматривается совместно.
Сформулируем правила сложения рациональных чисел:
Сложение нуля с отличным от него рациональным числом
Прибавление нуля к любому числу дает то же число. Данное правило возможно записать в виде равенства: a + 0 = a (для любого рационального числа а). Используя переместительное свойство сложения, получим также верное равенство: 0 + a = a .
Сложение противоположных рациональных чисел
Сумма противоположных чисел равна нулю.
Сложение положительных рациональных чисел
В виде обыкновенной дроби возможно представить любое положительное рациональное число и использовать далее схему сложения обыкновенных дробей.
Решение
Осуществим сложение дробей с разными знаменателями:
6 10 + 5 9 = 54 90 + 50 90 = 104 90 = 1 7 45
Рациональные числа, которые подвергают действию сложения, возможно записать в виде конечных десятичных дробей или в виде смешанных чисел и, таким образом, осуществить сложение десятичных дробей и смешанных чисел соответственно.
Сложение рациональных чисел с разными знаками
Для того, чтобы осуществить сложение рациональных чисел с разными знаками, необходимо из бОльшего модуля слагаемых вычесть меньший и перед полученным результатом поставить знак того числа, модуль которого больше.
Решение
Сложение отрицательных рациональных чисел
Для того, чтобы произвести сложение отрицательных рациональных чисел, необходимо сложить модули заданных слагаемых, затем полученному результату присвоить знак минус.
Решение
Действие вычитания рациональных чисел
При вычитании из бОльшего положительного рационального числа мы либо производим вычитание обыкновенных дробей, либо, если это уместно, вычитание десятичных дробей или смешанных.
Решение
Необходимо из рационального числа 2 7 вычесть рациональное число 5 3 7
Решение
Действие умножения рациональных чисел
Общее понятие числа расширяется от натуральных чисел к целым, так же как от целых к рациональным. Все действия с целыми числами имеют те же свойства, что и действия с натуральными. В таком случае, и действия с рациональными числами также должны характеризоваться всеми свойствами действий с целыми числами. Но для действия умножения рациональных чисел присуще дополнительное свойство: свойство умножения взаимообратных чисел. Вышесказанному соответствуют все правила умножения рациональных чисел. Укажем их.
Умножение на нуль
Произведение любого рационального числа a на нуль есть нуль.
Умножение на единицу
Т.е. a · 1 = a или 1 · a = a (для любого рационального a ). Единица здесь является нейтральным числом по умножению.
Умножение взаимообратных чисел
К примеру, результатом произведения чисел 5 6 и 6 5 будет единица.
Умножение положительных рациональных чисел
В общих случаях умножение положительных рациональных чисел сводится к умножению обыкновенных дробей. Первым действием множители представляются в виде обыкновенных дробей, если заданные числа таковыми не являются.
Решение
Можно также работать и с конечными десятичными дробями. Удобнее будет в данном случае не переходить к действиям над обыкновенными дробями.
Решение
Перемножим десятичные дроби столбиком:
В частных случаях нахождение произведения рациональных чисел представляет собой умножение натуральных чисел, умножение натурального числа на обыкновенную или десятичную дробь.
Умножение рациональных чисел с разными знаками
Чтобы найти произведение рациональных чисел с разными знаками, необходимо перемножить модули множителей и полученному результату присвоить знак минус.
Решение
Умножение отрицательных рациональных чисел
Для того, чтобы найти произведение отрицательных рациональных чисел, необходимо перемножить модули множителей.
Перемножим их столбиком:
Полученный результат и будет являться искомым произведением.
Деление рациональных чисел
На множестве рациональных чисел деление не считается самостоятельным действием, поскольку оно производится через действие умножения. Собственно, этот смысл заложен в правило деления рациональных чисел.
Таким образом, деление рационального числа на другое рациональное число, отличное от нуля, сводится к действию умножения рациональных чисел.
Решение
Приемы рациональных вычислений на уроках математики в начальной школе
В школьной практике мы постоянно сталкиваемся с тем, что ребенок использует привычные, во многом навязанные ему способы решения. Так, например, некоторые дети, после того как изучены приемы письменных вычислений, начинают применять эти способы и при устном решении примеров. Это заставляет задуматься, что же побуждает детей обращаться к такому нерациональному приему решения? Думаю, стремление действовать в соответствии с определенными алгоритмами, избегая при этом активных усилий мысли. Т.о. перед нами встает одна из главнейших задач обучения математике – пробудить у школьника потребность активно мыслить, искать наиболее рациональные пути решения.
Прививая любовь к устным упражнениям, учитель будет помогать ученикам активно действовать с учебным материалом, пробуждать у них стремление совершенствовать способы вычислений и решения задач, менее рациональные заменять более совершенными и экономичными. А это – важнейшее условие сознательного усвоения материала. Направленность мыслительной деятельности ученика на поиск рациональных путей решения проблемы свидетельствует о вариативности мышления.
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приемы, помогающие значительно облгчить процесс вычисления. Некоторые из таких приемов не предусмотрены программой начальной школы, а между тем детей довольно легко подвести к ознакомлению с ними, используя современную программу и учебник.
Успешное применение различных приемов зависит в значительной мере от находчивости, изобретательности и умения подмечать особенности чисел и их сочетаний. Приемы устных вычислений основываются на знании нумерации, основных свойств действий, на сведении вычислений к более простым, результаты которых могут быть получены из табличных результатов.
Работа над приемами устных вычислений должна вестись с первого класса. Например, познакомив детей с натуральным рядом чисел и имея его перед глазами, легко закрепить состав чисел. Например, ряд чисел от 0 до 7. Поставив пальчики на крайние числа и передвигая их к центру, дети хором говорят: 7 – это 0 и 7; 1 и 6; 2 и 5 и т.д. Отработав таким образом состав чисел в пределах 10 и познакомившись с приемами перестановки слагаемых, дети легко справляются с заданием: найти сумму чисел от 1 до 10. Важно показать детям при этом и вычисления по порядку для сравнения, чтобы выделить более легкий и рациональный чисел. В дальнейшем, используя переместительное и сочетательное свойства сложения, легко можно найти сумму чисел: 18 + 23 + 22 + 17.
Например: 27 + 59 = 27 + 50 + 3 + 6 (традиционный способ)
53 – 28 = 53 – 20 – 3 – 5 (традиционный способ)
А можно: 53 – 28 = 53 – 30 + 2 и т.д.
Здесь приемы следующие:
— округление одного или нескольких слагаемых;
— округление уменьшаемого или вычитаемого.
Существуют приемы, основанные на знаниях некоторых свойств чисел или результатов действий. Наблюдая примеры:
1 + 3 + 5 + 7 = 16 = 4 * 4 и т.д.,
легко находить сумму любого количества последовательных нечетных чисел, начиная с 1. Она равна произведению количества слагаемых на самого себя.
Можно использовать для вычислений такую закономерность:
9 + 10 + 11 + 12 = 13 + 14 + 15 и т.д.
Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия в исходной вычислительной программе.
Например: 6 + 2 – 2; 7580 : 20 * 20; 783 * 4 + 783 * 6 – 703 * 8 * 0 и т.п.
Задания можно давать и в занимательной форме, например “Математический лабиринт”. Дети, выбирая то или иное арифметическое действие, сравнивают числа, им приходится мыслить целенаправленно, обосновывать сказанное.
Все эти приемы основаны на конкретном смысле умножения и помогают расширять знания детей о свойствах умножения и возможности рациональных вычислений задолго до знакомства с этими приемами в средней школе.
Вот как можно просто и быстро перемножать числа от 10 до 20: к одному из чисел надо прибавить количество единиц другого, умножить на 10 и прибавить произведение единиц чисел. Например: 16 * 18 = (16+8)*10 + 6*8 = 240 + 48 = 288
Используя описанный прием, ученик умножает на 10 и применяет табличное умножение, т.е. выполняет довольно простые мыслительные операции.
Овладение некоторыми приемами тождественных преобразований и рациональных вычислений готовит детей к успешному изучению математики в средней школе, а кроме того, перед учениками открывается совсем другая математика: живая, полезная и понятная. И очень жаль, если непонимание математических связей начинается в начальной школе. Как правило, к сожалению, такие дети не могут предложить нестандартное решение. Им трудно объяснить свой выбор, потому что они бояться ошибиться.
Рациональные уравнения (ЕГЭ 2022)
Рациональные уравнения – это уравнения, в которых и левая, и правая части – рациональные выражения.
Ну… Это было сухое математическое определение, и слово-то какое: «рациональные». А по сути, рациональные выражения – это просто целые и дробные выражения без знака корня.
А получается, что под пугающим «рациональным уравнением» скрывается всего лишь уравнение, в котором могут присутствовать сложение, вычитание, умножение, деление и возведение в степень с целым показателем, но НЕ корень из переменной.
Рациональные уравнения — коротко о главном
Определение рационального уравнения:
Рациональное уравнение – это равенство двух рациональных (без знака корня) выражений.
Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
Алгоритм решения рациональных уравнений:
Система для решения дробно рациональных уравнений:
Что такое рациональные уравнения?
Давай научимся отличать рациональные уравнения от иррациональных! Зачем? Рациональные уравнения решать проще.
А зачем работать больше, если можно работать меньше?
Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение. (И не поедешь из Москвы в Петербург через Магадан, решая рациональные уравнения как нерациональные).
Целые рациональные уравнения
Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.
Если в дроби нет деления на переменную (то есть на \( \displaystyle x\), \( \displaystyle y\) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:
Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.
Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:
Какой наименьший общий знаменатель будет?
Правильно \( \displaystyle 6\)!
Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на \( \displaystyle 2\), а второго на \( \displaystyle 3\), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.
А \( \displaystyle 13\) не трогаем, оно нам не мешает, имеем:
А теперь делим обе части на \( \displaystyle 13\):
Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, \( \displaystyle 6\), так \( \displaystyle 6\), ну можно для верности подставить этот ответ в исходное уравнение, получим \( \displaystyle 0=0\), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).
Дробно-рациональные уравнения
А вот еще одно уравнение \( \displaystyle \frac<5>
Это уравнение целое? НЕТ. Тут есть деление на переменную \( \displaystyle x\), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.
Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.
Для начала найдем наименьший общий знаменатель, это будет \( \displaystyle (x+1)\cdot (x+3)\).
Важный момент!
В предыдущем примере, где было целое уравнение мы не стали свободный член \( \displaystyle 13\) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель \( \displaystyle (x+1)\cdot (x+3)\).
А это тебе не шутки, переменная в знаменателе!
Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!
Это надеюсь, ты запомнишь, но давай посмотрим что вышло:
Что-то оно огромное получилось, надо все посокращать:
\( \displaystyle 5(x+3)+(4
Раскроем скобки и приведем подобные члены:
Ну как, это уже попроще выглядит, чем в начале было?
Выносим за скобку общий множитель: \( \displaystyle 3x\cdot (x+1)=0\)
У этого уравнения два решения, его левая сторона принимает нулевое значение при \( \displaystyle x=0\) и \( \displaystyle x=-1\).
Вроде бы все, ну ладно давайте напоследок подставим корни \( \displaystyle x=0\) и \( \displaystyle x=-1\) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим \( \displaystyle 0\), получается \( \displaystyle 3=3\) –нет претензий?
Но ведь это же будет ноль!
На ноль делить нельзя, это все знают, в чем же дело.
Дело в ОДЗ — Области Допустимых Значений!
Всякий раз когда ты видишь уравнение, где есть переменные (\( \displaystyle x,y\) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.
Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.
Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:
Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами \( \displaystyle x=0\) и \( \displaystyle x=-1\) мы смело исключаем \( \displaystyle x=-1\), т.к. он противоречит ОДЗ.
Значит, какой ответ будет у решенного уравнения?
В ответ стоит написать только один корень, \( \displaystyle x=0\).
Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.
Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,
ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!
Алгоритм решения рационального уравнения
Усвоил, говоришь? А ты докажи! 🙂 Вот тебе примеры на закрепление. Попробуй решить сам, а потом сверься с ответом.
Алгоритм решения уравнений с рациональными числами
Что такое рациональные уравнения: определение и виды
Рациональным называют уравнение, обе части которого содержат рациональные выражения.
По-другому, алгебраическое рациональное уравнение представляет собой такое уравнение, левую часть которого записывают в виде рационального выражения, а правую с нулем.
Данные термины равнозначны. В подтверждении можно записать выражения P и Q с равносильными уравнениями P=Q и P−Q=0.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В рациональных уравнениях может быть разное число переменных от одного и более. Самыми простыми считаются математические выражения с одной переменной. В математике рассматривают два вида рациональных уравнений:
Целое рациональное уравнение – это уравнение, обе части которого содержат целые рациональные выражения.
Дробное рациональное уравнение представляет собой запись, в которой одна или обе части содержат дробь.
В случае дробного рационального уравнения линейное выражение обязательно включает деление на переменную, либо переменную в знаменателе. Подобная запись не характерна для уравнений целого типа.
Основные приемы решения рациональных уравнений
Исходя из вида рационального уравнения, применяют определенный порядок действий для его решения. Когда требуется найти ответ к задаче с целым рациональным уравнением, следует воспользоваться универсальным методом:
Когда необходимо решить дробное рациональное уравнение, то следует воспользоваться аналогичным алгоритмом действий, но с небольшими дополнениями. Разница в способах заключается в том, что после четвертого шага, который состоит в поиске предполагаемых корней, при неравносильных преобразованиях необходимо выполнить проверку корней путем их подстановки в формулу.
Важно учитывать тот факт, что обладать нулевым значением может только числитель дроби. Корни, которые приводят знаменатель к нулевому значению, носят названия посторонних.
Встречаются дробные рациональные уравнения в достаточно сложной форме. Такие выражения необходимо упростить и решить путем частичной замены уравнения новой переменной.
Преобразования для упрощения формы уравнения
Решение рациональных уравнений достаточно просто найти, если воспользоваться некоторыми преобразованиями. Подобные манипуляции могут быть следующего типа:
Равносильными преобразованиями называют манипуляции, приводящие к выражению нового вида, содержащему корни первоначального.
Равносильные преобразования первоначального уравнения, не требующие проверок:
Неравносильные преобразования – действия с уравнением или системой, в результате которых образуются посторонние корни.
Неравносильными преобразованиями являются следующие манипуляции:
Если рациональное уравнение решено путем неравносильных преобразований, то полученные корни требуется проверить с помощью подстановки в первоначальное выражение. Это связано с вероятностью образования посторонних корней при неравносильных преобразованиях.