Как решать переменные дроби
Решение уравнений с переменной в знаменателе дроби
Вы будете перенаправлены на Автор24
Уравнения, содержащие переменную в знаменателе можно решать двумя способами:
Приведя дроби к общему знаменателю
Используя основное свойство пропорции
1 способ. Приведение дробей к общему знаменателю.
Решение:
1.Перенесем дробь из правой части уравнения в левую
Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.
\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3=<2х>^2+6х+3х+9\]
Приведем подобные слагаемые в полученном выражении
\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3=<2х>^2+6х+3х+9=\] \[<=2х>^2+9х+9\]
Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов
$\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1=<2х>^2-х-10х+5=<2х>^2-11х+5$
Тогда уравнение примет вид:
Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним
Приведем подобные слагаемые
Тогда дробь примет вид
Решим линейное уравнение:
Ответ:$-0,2.$
Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе
Алгоритм решения уравнения, которое содержит переменную в знаменателе
Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные
2 способ. Используем основное свойство пропорции
Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.
Используем данное свойство для решения этого задания
1.Найдем и приравняем произведение крайних и средних членов пропорции.
Решив полученное уравнение, мы найдем корни исходного
Ответ:$-0,2.$
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 12 05 2021
Как решить уравнение с неизвестным в дроби
Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей. Как, например, в уравнении ниже.
В таких случаях подобные уравнения можно решить двумя способами.
I способ решения
Сведение уравнения к пропорции
При решении уравнений способом пропорции необходимо выполнить следующие действия:
Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны никакие преобразования.
Будем работать с правой частью уравнения. Упростим правую часть уравнения так, чтобы там осталась только одна дробь. Для этого вспомним правила сложения числа с алгебраической дробью.
Теперь используем правило пропорции и решим уравнение до конца.
II способ решения
Сведение к линейному уравнению без дробей
Рассмотрим уравнение выше еще раз и решим его другим способом.
Мы видим, что в уравнении присутствуют две дроби «
x − 4 |
5 |
» и «
2x + 4 |
9 |
».
Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.
Другими словами, необходимо свести уравнение к обычному линейному уравнению без неизвестного в дроби.
Чтобы избавиться от дробей в уравнении нужно:
Умножим каждый член уравнения на « 45 ».
При умножении уравнения на число нужно каждый член уравнения умножить на это число.
Решение уравнений с дробями
5 класс, 6 класс, 7 класс
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении: Понятие дробного уравненияДробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так: Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе. Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры: На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное. Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение. Как решать уравнения с дробями1. Метод пропорцииЧтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает. Итак, у нас есть линейное уравнение с дробями: В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь. После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели. 2. Метод избавления от дробейВозьмем то же самое уравнение, но попробуем решить его по-другому. В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать: Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля! Вот так просто мы получили тот же ответ, что и в прошлый раз. Что еще важно учитывать при решенииУниверсальный алгоритм решенияОпределить область допустимых значений. Найти общий знаменатель. Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут. Раскрыть скобки, если нужно и привести подобные слагаемые. Решить полученное уравнение. Сравнить полученные корни с областью допустимых значений. Записать ответ, который прошел проверку. Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах. Примеры решения дробных уравненийЧтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек. Пример 1. Решить дробное уравнение: 1/x + 2 = 5. Пример 2. Найти корень уравнения Пример 3. Решить дробное уравнение: Если x = 3 — знаменатель тоже равен нулю. Урок по теме «Решение дробных рациональных уравнений». 8-й классРазделы: Математика Класс: 8 Цели урока: Тип урока: урок – объяснение нового материала. Ход урока 1. Организационный момент. Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему? Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений». 2. Актуализация знаний. Фронтальный опрос, устная работа с классом. А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы: 3. Объяснение нового материала. Решить в тетрадях и на доске уравнение №2. Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5). Решить в тетрадях и на доске уравнение №4. Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6). Теперь попытайтесь решить уравнение №7 одним из способов. Дробно-рациональные уравненияЧто такое дробно-рациональные уравненияДробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как: при P ( x ) и Q ( x ) в виде выражений, содержащих переменную. Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем. 1 2 x + x x + 1 = 1 2 Уравнения, которые не являются дробно-рациональными: Как решаются дробно-рациональные уравненияВ процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения. Алгоритм действий при стандартном способе решения: Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить: Начать следует с области допустимых значений: Воспользуемся правилом сокращенного умножения: В результате общим знаменателем дробей является: Выполним умножение каждого из членов выражения на общий знаменатель: После сокращения избавимся от скобок и приведем подобные слагаемые: Осталось решить квадратное уравнение: Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать: Примеры задач с ответами для 9 классаТребуется решить дробно-рациональное уравнение: Определим область допустимых значений: Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой: Сократим дроби, избавимся от скобок, приведем подобные слагаемые: Потребуется решить квадратное уравнение: Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень. Дано дробно-рациональное уравнение, корни которого требуется найти: В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю: Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему: Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ: Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль: Получилось квадратное уравнение, которое можно решить: Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения. Нужно решить дробно-рациональное уравнение: На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю: Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений. Корни квадратного уравнения: Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень. Найти корни уравнения: Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю: Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений: Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ. Ответ: х — любое число, за исключением 3. Требуется вычислить корни дробно-рационального уравнения: На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю: Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение. Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни. Ответ: корни отсутствуют Нужно найти корни уравнения: Начнем с определения ОДЗ: При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим: Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме: Второе значение не соответствует области допустимых значений.
|
---|