Как решать отрицательный дискриминант

Дискриминант

Дискриминантом квадратного трехчлена называют выражение \(b^<2>-4ac\), где \(a, b\) и \(c\) – коэффициенты данного трехчлена.

Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
— если \(D\) положителен – уравнение будет иметь два корня;
— если \(D\) равен нулю – только один корень;
— если \(D\) отрицателен – корней нет.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит \(x_<1>\) и \(x_<2>\) будут различны по значению, ведь в первой формуле \(\sqrt\) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения \(x^2+2x-3=0\)
Решение:

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед \(\sqrt\)

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения \(x^2-4x+4=0\)
Решение:

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения \(x^2+x+3=0\)
Решение

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Находим корни уравнения

Оба корня содержат невычислимое выражение \(\sqrt<-11>\), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение \(x^2+x+3\) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Источник

Дискриминант
квадратного уравнения

Мы уже разобрали, как решать квадратные уравнения. Теперь давайте более подробно рассмотрим, что называют дискриминантом квадратного уравнения.

Вернемся к нашей формуле для нахожденя корней квадратного уравнения.

Выражение « b 2 − 4ac », которое находится под корнем, принято называть дискриминантом и обозначать буквой « D ».

По-другому, через дискриминант формулу нахождения корней квадратного уравнения можно записать так:

По одной из версий термин «Дискриминант» произошел от латинского discriminantis, что означает «отличающий» или «различающий».

В зависимости от знака « D » (дискриминанта) квадратное уравнение может иметь два, один или ни одного корня. Рассмотрим все три случая.

I случай
D > 0
(дискриминант больше нуля)

x1;2 =

−b ± √ D
2a

x1;2 =

−5 ± √ 81
2 · 2

x1;2 =

−5 ± 9
4

x1 =

−5 + 9
4
x2 =

−5 − 9
4
x1 =

4
4
x2 =

−14
4
x1 = 1x2 = −3

2
4
x1 = 1x2 = −3

1
2

Ответ: x1 = 1; x2 = −3

1
2

II случай
D = 0
(дискриминант равен нулю)

D = b 2 − 4ac
D = (−8) 2 − 4 · 16 · 1
D = 64 − 64
D = 0

x1;2 =

−b ± √ D
2a

x1;2 =

− (−8) ± √ 0
32

x1;2 =

8 ± 0
32

x =

8
32

x =

1
4

Ответ: x =

1
4

III случай
D
(дискриминант меньше нуля)

D = b 2 − 4ac
D = (−6) 2 − 4 · 9 · 2
D = 36 − 72
D = −36
D

x1;2 =

−b ± √ D
2a

x1;2 =

− (−6) ± √ −36
32

Ответ: нет действительных корней

Источник

Как найти дискриминант квадратного уравнения

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие квадратного уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 8 + 4 = 12. При вычислении левой части получается верное числовое равенство, то есть 12 = 12.

Уравнением можно назвать выражение 8 + x = 12, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени, значит, такое уравнение является квадратным.

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Есть три вида квадратных уравнений:

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, которое находится под корнем в формуле нахождения корней квадратного уравнения. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Чаще всего для поиска дискриминанта используют формулу:

В этом ключе универсальная формула для поиска корней квадратного уравнения выглядит так:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Эта формула подходит даже для неполных квадратных уравнений.

Но есть и другие формулы — все зависит от вида уравнения. Чтобы в них не запутаться, сохраняйте табличку или распечатайте ее и храните в учебнике.

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Как решать квадратные уравнения через дискриминант

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный. Только после этого вычисляем значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

А вот и еще одна табличка: в ней вы найдете формулы для поиска корней квадратных уравнений при помощи дискриминанта:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, важно практиковаться. Вперед!

Примеры решения квадратных уравнений с помощью дискриминанта

Ответ: корень уравнения 3.

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.

Источник

Решение квадратных уравнений с отрицательным дискриминантом

Рассмотрим решение квадратных уравнений, дискриминант которых отрицателен:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Пример №42.4.

Решить уравнение: Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант.

Решение:

Найдем дискриминант: Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант.

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Тогда Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант.

Ответ: Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант.

Видим, что если дискриминант квадратного уравнения отрицателен, то уравнение имеет решения на множестве комплексных чисел. В ответе получаются два сопряженных комплексных числа. Это очень важный результат: теперь мы знаем, что абсолютно любое квадратное уравнение имеет два корня на множестве комплексных чисел.

Подобное утверждение, известное под названием «основная теорема алгебры», было доказано Гауссом в конце XVIII века: любое алгебраическое уравнение Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант-й степени имеет Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминанткомплексных корней (при этом некоторые корни являются кратными). Эти результаты подчеркивают ту исключительную роль, которую играют комплексные числа в теории алгебраических уравнений.

Эта лекция взята с главной страницы на которой находится курс лекций с теорией и примерами решения по всем разделам высшей математики:

Другие лекции по высшей математике, возможно вам пригодятся:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминантОсновная формула корней квадратного уравнения

Первое уравнение:
x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминант

Второе уравнение:
15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

Наконец, третье уравнение:
x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминантРешение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Как решать отрицательный дискриминант. Смотреть фото Как решать отрицательный дискриминант. Смотреть картинку Как решать отрицательный дискриминант. Картинка про Как решать отрицательный дискриминант. Фото Как решать отрицательный дискриминантВынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *