Как решать нестрогие неравенства
Как решать неравенства — практикум ОГЭ (ГИА)
Несмотря на то, что решение неравенств очень напоминает решение уравнений, все-таки неравенства вызывают у школьников больше затруднений.
Ученики часто спрашивают как решать неравенства те или иные, просят оценить решение неравенства, полученное у доски в школе или помочь в решении домашнего задания с неравенством. В основном они связаны не с решением неравенства как такового, а с проблемой записи решения и с проблемой знака неравенства, которое в определенные моменты заменяется на противоположный.
Решение неравенств — это материал, который помогает выявить у экзаменуемого сразу несколько умений и навыков: умение решать уравнения, работать со знаком неравенства, оценить полученное решение с точки зрения постановки неравенства. Поэтому неравенства включены в ОГЭ (ГИА).
Как решать простейшие неравенства из ОГЭ (ГИА)
Итак, первое неравенство:
Как решать нестрогое неравенство
Нестрогим неравенством называется неравенство, у которого вместо строгого знака «больше» или «меньше», стоит знак «больше или равно» или «меньше или равно». Например, давайте решим нестрогое неравенство. Возьмем простое неравенство, чтобы вы поняли суть вопроса.
Решаем аналогично — только сначала упростим правую часть нашего неравенства. Переносим неизвестные в левую часть неравенства, а известные (числа) в правую часть неравенства:
Упрощаем правую часть:
Ответ: 
Обратите внимание на запись ответа. Так как у нас неравенство нестрогое, то число 2 будет входить в решение этого неравенства, поэтому мы его включаем в ответ, отмечая квадратной скобкой.
Вот так:
Решение неравенств из сборника ОГЭ по математике ФИПИ
Неравенство 1
Укажите решение неравенства
Решение:
Перенесем неизвестные в левую часть неравенства, а известные — в правую часть неравенства:

искомый интервал: 
Ответ 2.
Неравенство 2
Укажите множество решений неравенства:
Как обычно, переносим неизвестные влево от знака неравенства, а известные величины — вправо:
Обратите внимание — здесь мы делим отрицательное число. Но делим то мы его на положительное число 6. Поэтому знак неравенства остается прежним!
Нам подходит вариант решения 4.
Неравенство 3
Укажите решение неравенства
Решение:
Подходит вариант решения 2.
Ответ: 2
Неравенство 4
Укажите множество решений неравенства
Решение:
Итак, решение неравенство иллюстрируется графиком 3.
Ответ: 3.
Теперь вы знаете, как решать неравенства, которые даны в части «Алгебра» ОГЭ (ГИА).
Метод интервалов: случай нестрогих неравенств
Сегодня мы узнаем, как использовать метод интервалов для решения нестрогих неравенств. Во многих учебниках нестрогие неравенства определяются следующим образом:
— это неравенство вида которое равносильно совокупности строгого неравенства и уравнения:
В переводе на русский язык это значит, что нестрогое неравенство это объединение классического уравнения и строгого неравенства Другими словами, теперь нас интересуют не только положительные и отрицательные области на прямой, но и точки, где функция равна нулю.
Отрезки и интервалы: в чем разница?
Прежде чем решать нестрогие неравенства, давайте вспомним, чем интервал отличается от отрезка:
Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок — закрашенными. Например:
На этом рисунке отмечен отрезок и интервал Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки — круглые.
Метод интервалов для нестрогих неравенств
К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками — и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:
Задача. Решите строгое неравенство:
Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:
( x − 5)( x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;
Отмечаем полученные корни на координатной оси:
Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:
Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:
Задача. Решите нестрогое неравенство:
Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:
( x − 5)( x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;
Отмечаем полученные корни на координатной оси:
В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:
Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:
Итак, основное отличие строгих и нестрогих неравенств:
Вот и вся разница! Просто запомните: в строгих неравенствах точки выколоты, а в нестрогих — закрашены.
Почему бесконечности всегда стоят в круглых скобках
У внимательного читателя наверняка возник вопрос: почему бесконечности отмечаются круглыми скобками даже в нестрогих неравенствах? Например, почему в последней задаче мы пишем
Что ж, это не опечатка. Бесконечность действительно обозначается круглой скобкой, даже если неравенство — нестрогое. Чтобы понять, почему так происходит, достаточно вспомнить определение бесконечности.
— это гипотетическое число, которое больше любого другого числа, участвующего в решении.
Трудность заключается в том, что нельзя работать с бесконечностью напрямую. Мы можем лишь приблизиться к ней, подставляя такие зверские числа, как 1 000 000 и даже 1 000 000 000. Но добраться до самой бесконечности все равно нельзя.
Именно поэтому бесконечность обозначают круглыми скобками. Ведь хотя бесконечность и ограничивает всю числовую прямую, сама она не принадлежит этой прямой.
Ситуация такая же, как с границами интервалов. Рассмотрим все числа из интервала:
Эта запись означает, что число не принадлежит интервалу, однако любое число, которое больше нуля и меньше единицы — принадлежит. В частности, этому интервалу принадлежат следующие числа:
Попробуем отметить эти числа на координатной прямой. Поскольку каждое следующее число вдвое меньше предыдущего, нам придется несколько раз менять масштаб. Получим вроде этого:
Что дает нам этот график? Оказывается, при достаточно крупном масштабе можно отметить любое число, сколь угодно близкое к нулю. При этом сам ноль никуда не денется — он остается недостижимой границей. Именно это и подразумевается, когда речь заходит о концах интервала.
То же самое происходит и с бесконечностью. Разница лишь в том, что масштаб надо не увеличивать, а уменьшать:
Мы можем сколь угодно долго идти к бесконечности, но так и не достигнем ее. Вот почему бесконечности обозначают круглыми скобками, подобно границам интервала.
Примеры решения неравенств
В заключение кратко разберем два нестрогих неравенства. И если в первой задаче еще есть пояснения, то вторая задача будет оформлена именно так, как и надо оформлять настоящее решение.
Как обычно, приравниваем все к нулю:
( x + 8)( x − 3) = 0;
x + 8 = 0 ⇒ x = −8;
x − 3 = 0 ⇒ x = 3.
Теперь рассматриваем функцию, которая находится в левой части неравенства:
Подставим в эту функцию бесконечность — получим выражение вида:
Чертим координатную ось, отмечаем корни и расставляем знаки:
Поскольку мы решаем неравенство или, что то же самое, осталось записать ответ:
x (12 − 2 x )(3 x + 9) ≥ 0
x (12 − 2 x )(3 x + 9) = 0;
x = 0;
12 − 2 x = 0 ⇒ 2 x = 12 ⇒ x = 6;
3 x + 9 = 0 ⇒ 3 x = −9 ⇒ x = −3.
x ≥ 6 ⇒ f ( x ) = x (12 − 2 x )(3 x + 9) → (+) · (−) · (+) = (−) x ∈ (−∞ −3] ∪ [0; 6].
Решение линейных неравенств
Основные понятия
Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.
Линейные неравенства — это неравенства вида:
где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти все значения переменной, при которой неравенство верное.
Типы неравенств
Линейные неравенства: свойства и правила
Вспомним свойства числовых неравенств:
Если же а b и c > d, то а + c > b + d.
Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
Если а d, то а – c b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).
Если же а > b, n — отрицательное число, то nа
Обе части можно умножить или разделить на одно отрицательное число, при этом знак неравенства поменять на противоположный.
Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>
Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.
Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.
Свойства выше помогут нам использовать следующие правила.
Правила линейных неравенств
Решение линейных неравенств
Линейные неравенства с одной переменной x выглядят так:
где a и b — действительные числа. А на месте x может быть обычное число.
Равносильные преобразования
Рассмотрим пример: 0 * x + 5 > 0.
Как решаем:
Метод интервалов
Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.
Метод интервалов заключается в следующем:
Если a ≠ 0, тогда решением будет единственный корень — х₀;
Для этого найдем значения функции в точках на промежутке;
Как решаем:
В соответствии с алгоритмом, сначала найдем корень уравнения − 6x + 12 = 0,
Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.
Определим знаки на промежутках.
Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.
Графический способ
Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.
Алгоритм решения y = ax + b графическим способом
Рассмотрим пример: −5 * x − √3 > 0.
Как решаем
Ответ: (−∞, −√3 : 5) или x
Дробно-рациональные неравенства
А сегодня рациональные неравенства не все могут решать. Точнее, решать могут не только лишь все. Мало кто может это делать.
© Кличко
Этот урок будет жёстким. Настолько жёстким, что до конца его дойдут лишь Избранные. Поэтому перед началом чтения рекомендую убрать от экранов женщин, кошек, беременных детей и.
Полагаю, что для вас не составит труда решить, например, вот такую дичь (кстати, попробуйте для разминки):
Теперь немного усложним задачу и рассмотрим не просто многочлены, а так называемые рациональные дроби вида:
А это — не рациональное, а самое обычное неравенство, которое решается методом интервалов:
Забегая вперёд, сразу скажу: существует как минимум два способа решения рациональных неравенств, но все они так или иначе сводятся к уже известному нам методу интервалов. Поэтому прежде чем разбирать эти способы, давайте вспомним старые факты, иначе толку от нового материла не будет никакого.
Что уже нужно знать
Важных фактов не бывает много. Действительно потребуются нам всего четыре.
Формулы сокращённого умножения
Да, да: они будут преследовать нас на протяжении всей школьной программы математики. И в университете тоже. Этих формул довольно много, но нам потребуются лишь следующие:
Обратите внимание на последние две формулы — это сумма и разность кубов (а не куб суммы или разности!). Их легко запомнить, если заметить, что знак в первой скобке совпадает со знаком в исходном выражении, а во второй — противоположен знаку исходного выражения.
Линейные уравнения
Квадратные уравнения
Напомню, что квадратным уравнением называется вот это:
Дальше всё зависит от знака дискриминанта:
Сами корни считаются по всем известной формуле:
Отсюда, кстати, и ограничения на дискриминант. Ведь квадратный корень из отрицательного числа не существует. По поводу корней у многих учеников жуткая каша в голове, поэтому я специально записал целый урок: что такое корень в алгебре и как его считать — очень рекомендую почитать.:)
Действия с рациональными дробями
Всё, что было написано выше, вы и так знаете, если изучали метод интервалов. А вот то, что мы разберём сейчас, не имеет аналогов в прошлом — это совершенно новый факт.
Определение. Рациональная дробь — это выражение вида
Очевидно, что из такой дроби легко получить неравенство — достаточно лишь приписать знак «больше» или «меньше» справа. И чуть дальше мы обнаружим, что решать такие задачи — одно удовольствие, там всё очень просто.
Проблемы начинаются тогда, когда в одном выражении находятся несколько таких дробей. Их приходится приводить к общему знаменателю — и именно в этот момент допускается большое количество обидных ошибок.
Поэтому для успешного решения рациональных уравнений необходимо твёрдо усвоить два навыка:
Как разложить многочлен на множители? Очень просто. Пусть у нас есть многочлена вида
Решение. Для начала посмотрим на знаменатели: все они — линейные двучлены, и раскладывать на множители тут нечего. Поэтому давайте разложим на множители числители:
Обратите внимание: во втором многочлене старший коэффициент «2» в полном соответствии с нашей схемой сначала оказался перед скобкой, а затем был внесён в первую скобку, поскольку там вылезла дробь.
То же самое произошло и в третьем многочлене, только там ещё и порядок слагаемых перепутан. Однако коэффициент «−5» в итоге оказался внесён во вторую скобку (помните: вносить множитель можно в одну и только в одну скобку!), что избавило нас от неудобств, связанных с дробными корнями.
Что касается первого многочлена, там всё просто: его корни ищутся либо стандартно через дискриминант, либо по теореме Виета.
Вернёмся к исходному выражению и перепишем его с разложенными на множители числителями:
Как видите, ничего сложного. Немного математики 7—8 класса — и всё. Смысл всех преобразований в том и состоит, чтобы получить из сложного и страшного выражения что-нибудь простое, с чем легко работать.
Однако так будет не всегда. Поэтому сейчас мы рассмотрим более серьёзную задачу.
Но сначала разберёмся с тем, как привести две дроби к общему знаменателю. Алгоритм предельно прост:
Возможно, этот алгоритм вам покажется просто текстом, в котором «много букв». Поэтому разберём всё на конкретном примере.
Решение. Такие объёмные задачи лучше решать по частям. Выпишем то, что стоит в первой скобке:
В отличие от предыдущей задачи, тут со знаменателями всё не так просто. Разложим на множители каждый из них.
Больше ничего разложить на множители нельзя, поскольку в первой скобке стоит линейный двучлен, а во второй — уже знакомая нам конструкция, которая не имеет действительных корней.
Наконец, третий знаменатель представляет собой линейный двучлен, который нельзя разложить. Таким образом, наше уравнение примет вид:
Обратите внимание на вторую строчку: когда знаменатель уже общий, т.е. вместо трёх отдельных дробей мы написали одну большую, не стоит сразу избавляться от скобок. Лучше напишите лишнюю строчку и отметьте, что, скажем, перед третьей дробью стоял минус — и он никуда не денется, а будет «висеть» в числителе перед скобкой. Это избавит вас от множества ошибок.
Ну и в последней строчке полезно разложить на множители числитель. Тем более что это точный квадрат, и нам на помощь вновь приходят формулы сокращённого умножения. Имеем:
Теперь точно так же разберёмся со второй скобкой. Тут я просто напишу цепочку равенств:
Возвращаемся к исходной задачи и смотрим на произведение:
Смысл этой задачи такой же, как и у предыдущей: показать, насколько могут упрощаться рациональные выражения, если подойти к их преобразованию с умом.
И вот теперь, когда вы всё это знаете, давайте перейдём к основной теме сегодняшнего урока — решению дробно-рациональных неравенств. Тем более что после такой подготовки сами неравенства вы будете щёлкать как орешки.:)
Основной способ решения рациональных неравенств
Существует как минимум два подхода к решению рациональных неравенств. Сейчас мы рассмотрим один из них — тот, который является общепринятым в школьном курсе математики.
Но для начала отметим важную деталь. Все неравенства делятся на два типа:
Неравенства второго типа легко сводятся к первому, а также уравнению:
\[f\left( x \right)\ge 0\Leftrightarrow \left[ \begin
Практика показывает, что наибольшие трудности вызывают пункты 2 и 4 — грамотные преобразования и правильная расстановка чисел в порядке возрастания. Ну, и на последнем шаге будьте предельно внимательны: мы всегда расставляем знаки, опираясь на самое последнее неравенство, записанное перед переходом к уравнениям. Это универсальное правило, унаследованное ещё от метода интервалов.
Итак, схема есть. Давайте потренируемся.
Приравниваем к нулю числитель:
Четвёртый пункт. Отмечаем полученные корни на числовой прямой:

Обратите внимание: все точки выколоты, поскольку исходное неравенство строгое. И тут уже неважно: из числителя эти точки пришли или из знаменателя.
\[f\left( x \right)=\frac
Итак, справа от всех корней у нас положительная область. А при переходе через каждый корень знак меняется (так будет не всегда, но об это позже). Поэтому переходим к пятому пункту: расставляем знаки и выбираем нужное:
Возвращаемся к последнему неравенству, которое было перед решением уравнений. Собственно, оно совпадает с исходным, ведь никаких преобразований в этой задаче мы не выполняли.
Вот и всё! Разве сложно? Нет, не сложно. Правда, и задачка была лёгкая. Сейчас чуть усложним миссию и рассмотрим более «навороченное» неравенство. При его решении я уже не буду давать столь подробных выкладок — просто обозначу ключевые моменты. В общим, оформим его так, как оформляли бы на самостоятельной работе или экзамене.:)
Выяснить это можно, например, так:
А мы отмечаем все три корня на числовой прямой:

Получили два множества: один — обычный отрезок, а другой — открытый луч на числовой прямой.
Важное замечание по поводу чисел, которые мы подставляем для выяснения знака на самом правом интервале. Совершенно необязательно подставлять число, близкое к самому правому корню. Можно брать миллиарды или даже «плюс-бесконечность» — в этом случае знак многочлена стоящего в скобке, числителе или знаменателе, определяется исключительно знаком старшего коэффициента.
В её записи присутствуют три многочлена:
Все они являются линейными двучленами, и у всех старшие коэффициенты (числа 7, 11 и 13) положительны. Следовательно, при подстановке очень больших чисел сами многочлены тоже будут положительны.:)
Мы очень скоро столкнёмся с такими задачами. Но сначала разберём альтернативный способ решения дробно-рациональных неравенств.
Альтернативный способ
Этот приём мне подсказала одна из моих учениц. Сам я никогда им не пользовался, однако практика показала, что многим ученикам действительно удобнее решать неравенства именно таким способом.
Итак, исходные данные те же. Нужно решить дробно-рациональное неравенство:
В остальном никаких отличий между числителем и знаменателем не прослеживается: мы так же приравниваем его к нулю, ищем корни, затем отмечаем их на числовой прямой. Так почему бы не заменить дробную черту (фактически — знак деления) обычным умножением, а все требования ОДЗ прописать в виде отдельного неравенства? Например, так:
\[\frac
\gt 0\Rightarrow \left\ < \begin
Давайте посмотрим, как это работает на реальных задачах.
Решение. Итак, переходим к методу интервалов:
\[\frac
Первое неравенство решается элементарно. Просто приравниваем каждую скобку к нулю:
Со вторым неравенством тоже всё просто:
\[x-11\ne 0\Rightarrow x\ne 11.\]

На примере этого решения хотел бы предостеречь вас от распространённой ошибки среди начинающих учеников. А именно: никогда не раскрывайте скобки в неравенствах! Наоборот, старайтесь всё разложить на множители — это упростит решение и избавит вас от множества проблем.
Теперь попробуем кое-что посложнее.
Переходим к методу интервалов:
\[\left\ < \begin
Переходим к уравнению:
Учитываем дополнительное требование:
Отмечаем все полученные корни на числовой прямой:

Опять две точки «накладываются» друг на друга — это нормально, так будет всегда. Важно лишь понимать, что точка, отмеченная одновременно выколотой и закрашенной, на самом деле является выколотой. Т.е. «выкалывание» — более сильное действие, чем «закрашивание».
Это абсолютно логично, ведь выкалыванием мы отмечаем точки, которые влияют на знак функции, но сами не участвуют в ответе. И если в какой-то момент число перестаёт нас устраивать (например, не попадает в ОДЗ), мы вычёркиваем его из рассмотрения до самого конца задачи.
В общем, хватит философствовать. Расставляем знаки и закрашиваем те интервалы, которые отмечены знаком «минус»:
И снова хотел обратить ваше внимание вот на это уравнение:
\[\left( 2x-13 \right)\left( 12x-9 \right)\left( 15x+33 \right)=0\]
Ещё раз: никогда не раскрывайте скобки в таких уравнениях! Вы только усложните себе задачу. Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Следовательно, данное уравнение просто «разваливается» на несколько более мелких, которые мы и решали в предыдущей задаче.
Учёт кратности корней
Из предыдущих задач легко заметить, что наибольшую сложность представляют именно нестрогие неравенства, потому как в них приходится следить за закрашенными точками.
Но в мире есть ещё большее зло — это кратные корни в неравенствах. Тут уже приходится следить не за какими-то там закрашенными точками — тут знак неравенства может внезапно не поменяться при переходе через эти самые точки.
Ничего подобного мы в этом уроке ещё не рассматривали (хотя аналогичная проблема часто встречалась в методе интервалов). Поэтому введём новое определение:
Частным случаем корня нечётной кратности являются все предыдущие задачи, рассмотренные в этом уроке: там везде кратность равна единице.
И ещё. Перед тем, как мы начнём решать задачи, хотел бы обратить ваше внимание на одну тонкость, которая покажется очевидной для опытного ученика, но вгоняет в ступор многих начинающих. А именно:
Здесь всё чётко: вся скобка возводилась в пятую степень, поэтому на выходе мы получили корень пятой степени. А теперь:
\[\left( <
Мы получили два корня, но оба они имеют первую кратность. Или вот ещё:
И пусть вас не смущает десятая степень. Главное, что 10 — это чётное число, поэтому на выходе имеем два корня, и оба они вновь имеют первую кратность.
В общем будьте внимательны: кратность возникает только тогда, когда степень относится ко всей скобке, а не только к переменной.
Решение. Попробуем решить её альтернативным способом — через переход от частного к произведению:
Разбираемся с первым неравенством методом интервалов:
Дополнительно решаем второе неравенство. На самом деле мы уже решали его, но чтобы проверяющие не придрались к решению, лучше решить его ещё раз:
Отметим всё, что мы получили, на числовой прямой:
Осталось расставить знаки:
Такие эффекты возможны только при корнях чётной кратности. И в следующей задаче мы столкнёмся с обратным «проявлением» этого эффекта. Готовы?
Решение. В этот раз пойдём по стандартной схеме. Приравниваем к нулю числитель:
Расставляем знаки и штрихуем области, отмеченные «плюсом»:
Перед тем, как записать окончательный ответ, внимательно посмотрим на картинку:
Объединяем все полученные кусочки в общее множество и записываем ответ.
Прежде чем мы пойдём дальше, хотелось бы ещё раз напомнить, что означает термин «решить неравенство» (любое — не обязательно дробно-рациональное). А означает он буквально следующее:
Определение. — значит найти множество всех его решений, либо доказать, что это множество пусто.
Казалось бы: что тут может быть непонятны? Да в том-то и дело, что множества можно задавать по-разному. Давайте ещё раз выпишем ответ к последней задаче:
Читаем буквально, что написано. Переменная «икс» принадлежит некому множеству, которое получается объединением (значок «U») четырёх отдельных множеств:
Правило сложения кратностей
Ну и в заключение сегодняшнего урока немного жести от Павла Бердова.:)
Внимательные ученики уже наверняка задались вопросом: а что будет, если в числителе и знаменателе обнаружатся одинаковые корни? Так вот, работает следующее правило:
Кратности одинаковых корней складываются. Всегда. Даже если этот корень встречается и в числителе, и в знаменателе.
Иногда лучше решать, чем говорить. Поэтому решаем следующую задачу:
Решение. Приравниваем к нулю числитель:
Пока ничего особенного. Приравниваем к нулю знаменатель:
Обратите внимание: в обоих случаях мы оставили именно «выколотый» корень, а «закрашенный» выкинули из рассмотрения. Потому что ещё в начале урока договорились: если точка одновременно и выколотая, и закрашенная, то мы всё равно считаем её выколотой.
В итоге у нас есть четыре корня, причём все оказались выколоты:
Отмечаем их на числовой прямой с учётом кратности:
Расставляем знаки и закрашиваем интересующие нас области:
Всё. Никаких изолированных точек и прочих извращений. Можно записывать ответ.
Правило умножения кратностей
Иногда встречается ещё более неприятная ситуация: уравнение, имеющее кратные корни, само возводится в некоторую степень. При этом меняются кратности всех исходных корней.
Такое встречается редко, поэтому большинство учеников не имеют опыта решения подобных задач. А правило здесь следующее:
Другими словами, возведение в степень приводит к умножению кратностей на эту же степень. Рассмотрим это правило на примере:
Решение. Приравниваем к нулю числитель:
Со знаменателем тоже никаких проблем:
В сумме у нас получилось пять точек: две выколотых и три закрашенных. Совпадающих корней в числителе и знаменателе не наблюдается, поэтому просто отмечаем их на числовой прямой:
Расставляем знаки с учётом кратностей и закрашиваем интересующие нас интервалы:

Как видите, всё не так сложно. Главное — внимательность. Последний раздел этого урока посвящён преобразованиям — тем самым, которые мы обсуждали в самом начале.
Предварительные преобразования
Неравенства, которые мы разберём в этом разделе, нельзя назвать сложными. Однако в отличие от предыдущих задач здесь придётся применить навыки из теории рациональных дробей — разложение на множители и приведение к общему знаменателю.
Мы детально обсуждали этот вопрос в самом начале сегодняшнего урока. Если вы не уверены, что понимаете, о чём речь — настоятельно рекомендую вернуться и повторить. Потому что нет никакого смысла зубрить методы решения неравенств, если вы «плаваете» в преобразовании дробей.
В домашней работе, кстати, тоже будет много подобных задач. Они вынесены в отдельный подраздел. И там вас ждут весьма нетривиальные примеры. Но это будет в домашке, а сейчас давайте разберём парочку таких неравенств.
Решение. Переносим всё влево:
Приводим к общему знаменателю, раскрываем скобки, приводим подобные слагаемые в числителе:
Теперь перед нами классическое дробно-рациональное неравенство, решение которого уже не представляет трудности. Предлагаю решить его альтернативным методом — через метод интервалов:
Не забываем ограничение, пришедшее из знаменателя:
\[x\left( x-1 \right)\ne 0\Rightarrow x\ne 0;x\ne 1\]
Отмечаем все числа и ограничения на числовой прямой:
Все корни имеют первую кратность. Никаких проблем. Просто расставляем знаки и закрашиваем нужные нам области:
Это всё. Можно записывать ответ.
Разумеется, это был совсем уж просто пример. Поэтому сейчас рассмотрим задачу посерьёзнее. И кстати, уровень этой задачи вполне соответствует самостоятельным и контрольным работам по этой теме в 8 классе.
Решение. Переносим всё влево:
Перед тем как приводить обе дроби к общему знаменателю, разложим эти знаменатели на множители. Вдруг вылезут одинаковы скобки? С первым знаменателем легко:
\[<
Со вторым чуть сложнее. Не стесняйтесь вносить множитель-константу в ту скобку, где обнаружилась дробь. Помните: исходный многочлен имел целые коэффициенты, поэтому велика вероятность, что и разложение на множители будет иметь целые коэффициенты (на самом деле так будет всегда, за исключением случаев, когда дискриминант иррационален).
\[\begin
Дальше легко. Приравниваем к нулю числитель.
Приравниваем к нулю знаменатель:
Никаких кратностей и совпадающих корней. Отмечаем четыре числа на прямой:
Всё! Лайк тому, то дочитал до этой строчки.:)















































