Показательные неравенства. Как решать показательные неравенства?
Показательные неравенства – это неравенства с переменной в показателе степени.
Как решать показательные неравенства?
Нужно стремиться свести неравенство к виду: \(a^\) \(˅\) \(a^\) (\(˅\) означает любой из знаков сравнения) – это позволяет избавиться от оснований и сделать переход к виду \(f(x) ˅ g(x)\).
Переход к \(x+2> 8-x \) невозможен, так как в основаниях разные числа
Делим обе части неравенства на \(5\)
Представляем четверку как \(2^2\)
Вот теперь делаем переход: избавляемся от оснований, не меняя знак сравнения, т.к. основание \(2>1\)
Пример: Решить показательное неравенство:
Избавимся от оснований с переменой знака т.к. \(0,2 \(\frac<4-\log_<0,2><4>><7>\)
Особые виды показательных неравенств
Таким образом, никакой \(x\) не сделает \(5^x\) отрицательным. То же самое можно сказать про \(2^x\), \(3^x\), \(4^x\), \(6^x\) и т.д.
Если \(a\) – положительно, то \(a^x>0\) при любых \(x\)
\(5^x\) – всегда больше нуля, и, уж тем более, оно будет больше \(-5\). Значит, решением неравенства \(5^x>-5\) будет любое число: \(x∈(-∞;∞)\).
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение показательных неравенств
Из них показательно-степенными неравенствами являются те, в которых есть переменные и в показателе степени, и в основании.
Для изучения этой темы стоит повторить:
И, конечно, для решения тригонометрических и логарифмических показательных неравенств также придется вспомнить формулы соответствующих разделов алгебры.
Для любых а и х верно неравенство a x > 0, т. е. показательная функция не принимает отрицательных значений.
Запишем следствие монотонности показательной функции в виде формул:
Как решать показательные неравенства
Как мы уже говорили, для успешного освоения этой темы нужно хорошенько повторить все, что касается показательных уравнений. Способы решения показательных неравенств выглядят примерно так же — мы будем пытаться упростить выражение, получить одинаковые степени или одинаковые основания, по возможности свести все к квадратному или рациональному уравнению. Но есть и свои тонкости.
Допустим, у нас есть простейшее показательное неравенство:
Если вы помните, как решались показательные уравнения, не придется долго думать, что делать с таким неравенством — приведем его к одинаковому основанию:
Казалось бы, все логично, но всегда ли можно смело вычеркивать одинаковые основания степеней? А что, если вместо 3 у нас основание степени будет 0,5? Посмотрим:
Проверим, верно ли в таком случае х > 2.
Как видите, на самом деле в этом случае х
Если а > 1, то a x > a n a > n, и при решении неравенства можно просто убрать одинаковые основания степени.
Наконец, если рассмотреть случай, когда а х > 9
Логичное, на первый взгляд, предположение, что х > 2, не выдержит проверки, потому что:
Если продолжить этот ряд, знаки будут чередоваться, и наш корень будет попеременно то меньше, то больше 2. Поэтому для ясности всегда предполагается, что основание степени — положительное число.
Это были общие правила, а сейчас рассмотрим разные виды показательных неравенств и примеры с решениями.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Показательные неравенства, сводящиеся к простейшим
Решая показательные уравнения, вы наверняка первым делом исследовали их на возможность приведения к одинаковым основаниям или одинаковым степенным функциям. Так вот, с неравенствами можно делать то же самое! Помните лишь о смене знака, если основание степени меньше единицы. И да пребудет с вами сила. 😎
Попробуем на примере несложного показательного неравенства с разными основаниями.
Пример 1
Поскольку 3 больше 1, знак не меняем:
Показательные неравенства, сводящиеся к квадратным
Снова давайте вспомним, как аналогичный метод применялся к показательным уравнениям. Если все переменные имели общий множитель, его можно было обозначить новой переменной — в итоге у нас, как правило, получалось квадратное уравнение. Нужно было лишь найти дискриминант и произвести обратную замену. И снова алгоритм решения показательных неравенств будет совершенно таким же.
Пример 1
Поскольку 3 > 1, мы не меняем знак.
Показательные неравенства, сводящиеся к рациональным
Как вы, наверное, помните из предыдущего курса алгебры, рациональные показательные неравенства — это такие, в которых левая и правая часть представляют собой дробно-рациональные функции. Метод их решения таков: нужно перенести все в левую часть, чтобы в правой остался лишь ноль, и привести к общему знаменателю. Далее решаем уравнение, отмечаем все корни на оси и применяем метод интервалов (если забыли, что это такое — повторите).
Важно помнить: если в числителе и знаменателе встретятся одинаковые множители с переменной, сокращать их нельзя.
Пример 1
Преобразуем неравенство указанным выше способом:
(обратите внимание, мы избавились от минуса в числителе и поменяли знак неравенства).
Поскольку выражение 2 х + 2 в любом случае будет больше нуля, мы можем смело его исключить из неравенства.
Пример 2
Обозначим 3 х через новую переменную y:
3 х = y, при условии что 3 х > 0.
Применим метод интервалов и получим:
Вернем на место нашу старую переменную:
Однородные показательные неравенства
Однородными называются такие показательные неравенства, где в каждом слагаемом сумма степеней одинакова.
Иногда такие выражения бывают очень длинными и запутанными, но не стоит этого пугаться. Практически все неравенства с однородными показательными функциями решаются по одному принципу: стараемся упростить выражение, разделив его на одночлен, а затем при необходимости делаем замену переменных.
Пример 1
Если обозначить (2/5) х новой переменной y, получим квадратное неравенство:
Неравенства, решаемые графическим методом
Этот метод решения показательных неравенств — самый наглядный, и для многих он может показаться самым простым. Нужно лишь построить графики функций, заданных в левой и правой части выражения, а затем посмотреть, в какой точке они пересекаются. Если бы мы имели дело с уравнением, эта точка стала бы корнем.
Но поскольку мы рассматриваем неравенства, нужно будет выделить искомую область. Для неравенства f(x) > g(x) это будет та область, где график функции f(x) находится выше.
Пример 1
Пример 2
Начертим графики этих двух функций, чтобы найти точку пересечения.
В этой статье есть все о показательных неравенствах.
Для тех, кто ничего не знает, мы начнем с самых азов, с самых простейших примеров. И постепенно научим вам решать любые показательные неравенства, которые могут встретиться вам на ЕГЭ.
Если вы продвинутый школьник, вы можете пропустить азы и переходить сразу… к методу декомпозиции или к анализу монотонности функций. 🙂
А если серьезно, даже если вы уже хорошо знаете тему, вы точно найдете для себя что-то новое!
Или же хорошо потренируетесь, если решите все 44 неравенства этой статьи самостоятельно.
Показательные неравенства — коротко о главном
Определение:
Простейшими показательными неравенствами являются неравенства следующего вида: \(<^>><^>,
f\left( x \right)>g\left( x \right)\) \(\left(при\
f\left( x \right) 25\), каким же должен быть \(\displaystyle x\)?
Я думаю, что ты без труда понял, что \(\displaystyle x>5\).
А если \(\displaystyle <<5>^>
Так как \(\displaystyle 25=<<5>^<2>>\), то ты вполне резонно можешь предположить, что \(\displaystyle x>2\).
А вот пример позабористее: \(\displaystyle <<0,1>^>
Опять таки, легко сосчитать, что \(\displaystyle 0,01=<<0,1>^<2>>\). И у нас получится \(\displaystyle <<0,1>^>
И какой можно из этого сделать вывод? Может быть, как и в предыдущем примере, \(\displaystyle x>2\)?
На первый взгляд, это кажется вполне очевидным. Но, увы, это не правильно.
Потому что, как ни парадоксально, из \(\displaystyle <<0,1>^>
><<0,1>^<2>>\) следует, что \(\displaystyle x
Кратко это правило можно записать так:
Давай вместо основания возьмем число \(\displaystyle 2\) и будем возводить его во всевозможные степени:
Ты понял, как я заполнил эту таблицу? Нет!?
Стыд и позор, я же просил повторить свойства степени. Вернись и перечитай, а потом возвращайся к нам.
Итак, все стало понятно? Ну что же, продолжим.
Что мы видим в этой таблице?
Чем больше степень, тем больше значение выражения \(\displaystyle <<2>^>\), и наоборот: чем меньше степень, тем это значение меньше.
Но, тем не менее, видно что, \(\displaystyle <<2>^>\) всегда больше нуля.
ВСЕГДА. Это же свойство справедливо ДЛЯ ЛЮБОГО ОСНОВАНИЯ С ЛЮБЫМ ПОКАЗАТЕЛЕМ!!
Решил? Честно? Ну хорошо, давай проверять вместе:
Пример 1. \(\displaystyle <<2>^> 1\), то \(\displaystyle x 1\), то
\(\displaystyle x+2\le 3\), откуда \(\displaystyle x\le 1\),
Пример 3. \(\displaystyle <<27>^>\le 81\).
И что же теперь делать? Бросать решение примера?
Нет! Этого не одобрю ни я, ни твой школьный учитель по математике.
Давай немного напряжемся и заметим, что и \(\displaystyle 27\) и \(\displaystyle 81\) это степени одного и того же числа. Какого? Конечно, это степени тройки (\(\displaystyle 27=<<3>^<3>>,
Тогда все становится сразу понятным:
\(\displaystyle <<27>^>\le 81\) \(\displaystyle <<3>^<3\left( x+2 \right)>>\le <<3>^<4>>\) (напомню, что при такой «замене» степени умножаются!).
Так как \(\displaystyle 3>1\), то знак неравенства не меняется и мы получаем:
\(\displaystyle 3\left( x+2 \right)\le 4\).
\(\displaystyle 3x+6\le 4,
Отсюда, ответ:
Пример 4. Теперь мы решим еще более «навороченный» пример:
На самом деле, у нас есть аж два способа решить данное неравенство:
Во-первых, представить \(\displaystyle \frac<1><3>\) как \(\displaystyle <<3>^<-1>>\)
(Если для тебя это «превращение» показалось магическим, перечитай свойства степени с отрицательным показателем)
Либо представить \(\displaystyle 9\) как \(\displaystyle <<\left( \frac<1> <3>\right)>^<-2>>\).
Мне хочется сейчас пойти именно вторым путем, ну а ты сам можешь применить первый. Как ты понимаешь, ответы должны совпасть.
Теперь слева и справа в неравенстве мы имеем одинаковые основания, значит мы можем перейти к неравенству относительно их показателей.
Однако, можно (и нужно!) заметить, что \(\displaystyle \frac<1> <3>9\)
Ну что же, здесь все нам тоже более-менее знакомо, единственно, что нужно вспомнить, так это то, что \(\displaystyle \frac<1><\sqrt<5>>=\sqrt<\frac<1><5>>=<<\left( \frac<1> <5>\right)>^<\frac<1><2>>>\).
Теперь окончательно получим:
Нам осталось лишь записать полученный правильный ответ:
Задачки для совсем самостоятельного решения:
\(\displaystyle <<3>^<-2x>> ты умеешь решать почти все показательные неравенства из первой части профильного ЕГЭ!
Но мы ведь с тобой хотим стать еще лучше и уметь решать еще более сложные неравенства?
Как ты без труда (или почти без труда) заметил, каждый раз, когда мы решали показательное неравенство, оно сводилось к некоторому линейному неравенству для показателей. Более того, каждая из частей (правая и левая) неравенства состояла ровно из одного выражения.
Что же запрещает природе вмешаться и сделать, например, с каждой стороны неравенства, скажем, не по одному выражению, а по три или даже четыре? Или же что ей запрещает составить такое неравенство, которое сводится уже не к линейному, а к квадратичному?
Правильно, ничего не запрещает. Поэтому мы должны быть готовы к решению и таких неравенств тоже. Давай вначале посмотрим на некоторые примеры:
Применим к нему уже знакомую не понаслышке технику. Что же мы получим в итоге?
Кто знает, что это такое? Конечно это квадратное неравенство! А теперь быстренько вспоминаем, как они решаются!
Да почти что как квадратные уравнения. А вот уж их ты точно умеешь решать, я не сомневаюсь.
Так как дискриминант больше нуля, то уравнение имеет два корня:
Если бы мы решали уравнение, то на этом можно было бы и остановиться. Но у нас с тобой более «высокая цель» – решение неравенства.
Поэтому далее нам нужен метод интервалов.
Метод интервалов
Метод интервалов — самый универсальный способ решения неравенств. Но он особенно эффективен при решении квадратных неравенств.
В этом разделе разберем алгоритм решения квадратных неравенств с помощью метода интервалов. И конечно же решим пару-тройку примеров.
Отметим эти точки на координатной прямой и разделим эту прямую на три интервала, затем выберем какое-нибудь число в любом из интервалов и вычислим, чему равно наше исходное выражение \(\displaystyle <^<2>>-5x+6\) в этой точке.
Мне нравится брать такое число, чтобы нужно было как можно меньше считать. Догадался, какое же это число? Верно, это ноль.
Ноль принадлежит самому левому интервалу.
Наше выражение, если подставить в него ноль вместо икса, будет равно \(\displaystyle 6\), \(\displaystyle 6>0\).
Поэтому в левом интервале я ставлю знак \(\displaystyle +\). Далее чередую.
Поскольку мы решаем неравенство \(\displaystyle <^<2>>-5x+6>0\), то нас интересуют те промежутки, где это выражение положительно (то есть стоит \(\displaystyle +\)).
Таким образом, наш ответ будет:
Теперь мне кажется, что ты без особого труда решишь следующие примеры:
Давай сверяться вместе:
Пример 1. \(\displaystyle <<\left( \frac<13> <11>\right)>^<<^<2>>-3x>> 1\), то \(\displaystyle <^<2>>-3x
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Решение показательных неравенств: основные способы
Многие считают, что показательные неравенства — это что-то такое сложное и непостижимое. И что научиться их решать — чуть ли не великое искусство, постичь которое способны лишь Избранные.
Полная брехня! Показательные неравенства — это просто. И решаются они всегда просто. Ну, почти всегда.:)
Сегодня мы разберём эту тему вдоль и поперёк. Этот урок будет очень полезен тем, кто только начинает разбираться в данном разделе школьной математики. Начнём с простых задач и будем двигаться к более сложным вопросам. Никакой жести сегодня не будет, но того, что вы сейчас прочитаете, будет достаточно, чтобы решить большинство неравенств на всяких контрольных и самостоятельных работах. И на этом вашем ЕГЭ тоже.
Как всегда, начнём с определения. — это любое неравенство, содержащее в себе показательную функцию. Другими словами, его всегда можно свести к неравенству вида
Конечно, в некоторых случаях неравенство может выглядеть более сурово. Вот, например:
Решение простейших показательных неравенств
Рассмотрим что-нибудь совсем простое. Например, вот это:
Как видим, чем большее число стоит в показателе степени, тем больше получается число на выходе. «Спасибо, кэп!» — воскликнет кто-нибудь из учеников. Разве бывает по-другому? К сожалению, бывает. Например:
Тут тоже всё логично: чем больше степень, тем больше раз число 0,5 умножается само на себя (т.е. делится пополам). Таким образом, полученная последовательность чисел убывает, а разница между первой и второй последовательностью состоит лишь в основании:
Суммируя эти факты, мы получаем самое главное утверждение, на котором и основано всё решение показательных неравенств:
Другими словами, если основание больше единицы, его можно просто убрать — знак неравенства при этом не поменяется. А если основание меньше единицы, то его тоже можно убрать, но при этом придётся поменять и знак неравенства.
С отрицательными основаниями всё ещё интереснее. Рассмотрим для примера вот такое неравенство:
На первый взгляд, всё просто:
В общем, ещё раз запомните главное правило: если основание в показательном уравнении больше единицы, его можно просто убрать; а если основание меньше единицы, его тоже можно убрать, но при этом поменяется знак неравенства.
Примеры решения
Итак, рассмотрим несколько простых показательных неравенств:
Что здесь можно сделать? Ну, слева у нас и так стоит показательное выражение — ничего менять не надо. А вот справа стоит какая-то хрень: дробь, да ещё и в знаменателе корень!
Однако вспомним правила работы с дробями и степенями:
Что это значит? Во-первых, мы легко можем избавиться от дроби, превратив её в степень с отрицательным показателем. А во-вторых, поскольку в знаменателе стоит корень, было бы неплохо превратить и его в степень — на этот раз с дробным показателем.
Применим эти действия последовательно к правой части неравенства и посмотрим, что получится:
Не забываем, что при возведении степени в степень показатели этих степеней складываются. И вообще, при работе с показательными уравнениями и неравенствами совершенно необходимо знать хотя бы простейшие правила работы со степенями:
Собственно, последнее правило мы только что и применили. Поэтому наше исходное неравенство перепишется следующим образом:
Теперь избавляемся от двойки в основании. Поскольку 2 > 1, знак неравенства останется прежним:
Вот и всё решение! Основная сложность — вовсе не в показательной функции, а в грамотном преобразовании исходного выражения: нужно аккуратно и максимально быстро привести его к простейшему виду.
Рассмотрим второе неравенство:
Так, так. Тут нас поджидают десятичные дроби. Как я уже много раз говорил, в любых выражениях со степенями следует избавляться от десятичных дробей — зачастую только так можно увидеть быстрое и простое решение. Вот и мы избавимся:
Перед нами вновь простейшее неравенство, да ещё и с основанием 1/10, т.е. меньшим единицы. Что ж, убираем основания, попутно меняя знак с «меньше» на «больше», и получаем:
Важное замечание. Данное неравенство можно было решить и по-другому — путём приведения обеих частей к степени с основанием, большим единицы. Взгляните:
После такого преобразования мы вновь получим показательное неравенство, но с основанием 10 > 1. А это значит, что можно просто зачеркнуть десятку — знак неравенства при этом не поменяется. Получим:
Как видите, ответ получился точь-в-точь такой же. При этом мы избавили себя от необходимости менять знак и вообще помнить какие-то там правила.:)
Идём далее. Рассмотрим чуть более сложное неравенство — в нём в показателе появляется квадратичная функция:
Ура! Мы получили обычное квадратное неравенство! Знак нигде не менялся, поскольку в основании стоит двойка — число, большее единицы.
Нули функции на числовой прямой
Наконец, рассмотрим ещё одно неравенство:
Опять видим показательную функцию с десятичной дробью в основании. Переводим эту дробь в обыкновенную:
В данном случае мы воспользовались приведённым ранее замечанием — свели основание к числу 5 > 1, чтобы упростить себе дальнейшее решение. Точно так же поступим и с правой частью:
Перепишем исходное неравенство с учётом обоих преобразований:
Основания с обеих сторон одинаковы и превосходят единицу. Никаких других слагаемых справа и слева нет, поэтому просто «зачёркиваем» пятёрки и получаем совсем простое выражение:
Однако работать с модулями — не самое приятное занятие, правда? Вот и мы не будем работать. А вместо этого просто перенесём все слагаемые влево и решим обычное неравенство методом интервалов:
Вновь отмечаем полученные точки на числовой прямой и смотрим знаки:
Обратите внимание: точки закрашены
В целом хотел бы заметить, что ничего сложного в показательных неравенствах нет. Смысл всех преобразований, которые мы сегодня выполняли, сводится к простому алгоритму:
По сути, это универсальный алгоритм решения всех таких неравенств. А всё, что вам ещё будут рассказывать по этой теме — лишь конкретные приёмы и хитрости, позволяющие упростить и ускорить преобразования. Вот об одном из таких приёмов мы сейчас и поговорим.:)
Метод рационализации
Рассмотрим ещё одну партию неравенств:
Ну и что в них такого особенного? Они же лёгкие. Хотя, стоп! Число π возводится в какую-то степень? Что за бред?
Получается, что все эти «устрашающие» неравенства ничем не отличаются решаются от простых, рассмотренных выше? И решаются точно так же? Да, совершенно верно. Однако на их примере я хотел бы рассмотреть один приём, который здорово экономит время на самостоятельных работах и экзаменах. Речь пойдёт о методе рационализации. Итак, внимание:
Вот и весь метод.:) А вы думали, что будет какая-нибудь очередная дичь? Ничего подобного! Но этот простой факт, записанный буквально в одну строчку, значительно упростит нам работу. Взгляните:
Вот и нет больше показательных функций! И не надо помнить: меняется знак или нет. Но возникает новая проблема: что делать с грёбаным множителем \[\left( \text< >\!\!\pi\!\!\text< >-1 \right)\]? Мы ведь не знаем, чему равно точное значение числа π. Впрочем, капитан очевидность как бы намекает:
Тут вообще всё просто, потому что справа стоит единица. А мы помним, что единица — это любое число в нулевой степени. Даже если этим числом является иррациональное выражение, стоящее в основании слева:
Получается, что второй множитель — не просто константа, а отрицательная константа! И при делении на неё знак исходного неравенства поменяется на противоположный:
Случай, когда нас интересуют боковые интервалы
Нас интересуют интервалы, отмеченные знаком «плюс». Осталось лишь записать ответ:
Переходим к следующему примеру:
Ну, тут совсем всё очевидно: в основаниях стоят степени одного и того же числа. Поэтому я распишу всё кратко:
Далее «причёсываем» выражения с обеих частей неравенства и применяем метод рационализации:
Как видим, в основании снова стоит иррациональное число, а справа снова стоит единица. Поэтому перепишем наше показательное неравенство следующим образом:
Отдельной проблемой при решении показательных неравенств является поиск «правильного» основания. К сожалению, далеко не всегда при первом взгляде на задание очевидно, что брать за основание, а что делать степенью этого основания.
Но не переживайте: здесь нет никакой магии и «секретных» технологий. В математике любой навык, который нельзя алгоритмизировать, можно легко выработать с помощью практики. Но для этого придётся решать задачи разного уровня сложности. Например, вот такие:
Сложно? Страшно? Да это же проще, чем цыплёнка об асфальт! Давайте попробуем. Первое неравенство:
Ну, я думают, тут и ежу всё понятно:
Переписываем исходное неравенство, сводя всё к основанию «два»:
Да, да, вы всё правильно поняли: я только что применил метод рационализации, описанный выше. Теперь нужно работать аккуратно: у нас получилось дробно-рациональное неравенство (это такое, у которого в знаменателе стоит переменная), поэтому прежде чем что-то приравнивать к нулю, необходимо привести всё к общему знаменателю и избавиться от множителя-константы.
Более сложный случай: три корня
Как нетрудно догадаться, штриховкой отмечены те интервалы, на которых выражение слева принимает отрицательные значения. Поэтому в окончательный ответ пойдут сразу два интервала:
Концы интервалов не входят в ответ, поскольку исходное неравенство было строгим. Никаких дополнительных проверок этого ответа не требуется. В этом плане показательные неравенства намного проще логарифмических: никаких ОДЗ, никаких ограничений и т.д.
Переходим к следующей задаче:
Обратите внимание: в третьей строчке я решил не мелочиться и сразу разделить всё на (−2). Минул ушёл в первую скобку (теперь там везде плюсы), а двойка сократилась с множителем-константой. Именно так и стоит поступать при оформлении реальных выкладок на самостоятельных и контрольных работах — не надо расписывать прям каждое действие и преобразование.
Идём далее. В следующем задании нас поджидают десятичные дроби:
А что нужно делать с десятичными дробями в показательных неравенствах? Правильно: избавляться от них, переводя в обыкновенные. Вот и мы переведём:
Ну и что мы получили в основаниях показательных функций? А получили мы два взаимно обратных числа:
Таким образом исходное неравенство можно переписать так:
Разумеется, при умножении степеней с одинаковым основанием их показатели складываются, что и произошло во второй строчке. Кроме того, мы представили единицу, стоящую справа, тоже в виде степени по основанию 4/25. Осталось лишь выполнить рационализацию:
Наконец, последнее неравенство из текущего «комплекта»:
В принципе, идея решения тут тоже ясна: все показательные функции, входящие в состав неравенства, необходимо свести к основанию «3». Но для этого придётся немного повозиться с корнями и степенями:
С учётом этих фактов исходное неравенство можно переписать так:
Но вернёмся к нашей задаче. Попробуем в этот раз обойтись без рационализации. Вспоминаем: основание степени больше единицы, поэтому тройки можно просто зачеркнуть — знак неравенства при этом не поменяется. Получим:
Выделение устойчивого выражения и замена переменной
В заключение предлагаю решить ещё четыре показательных неравенства, которые уже являются довольно сложными для неподготовленных учеников. Чтобы справиться с ними, необходимо вспомнить правила работы со степенями. В частности — вынесение общих множителей за скобки.
Но самое главное — научиться понимать: что именно можно вынести за скобки. Такое выражение называется устойчивым — его можно обозначить новой переменной и таким образом избавиться от показательной функции. Итак, посмотрим на задачи:
Начнём с самой первой строчки. Выпишем это неравенство отдельно:
Вот примерно так и нужно оформлять решение на настоящих контрольных и самостоятельных работах.
Что ж, попробуем что-нибудь посложнее. Например, вот такое неравенство:
Первое, на что следует обратить внимание — это, конечно, десятичная дробь в основании первой степени. От неё необходимо избавиться, а заодно привести все показательные функции к одному и тому же основанию — числу «2»:
То же самое и с тройкой (числа 9, 27, 81 и 243 являются её степенями), и с семёркой (числа 49 и 343 тоже было бы неплохо запомнить). Ну, и у пятёрки тоже есть «красивые» степени, которые нужно знать:
Конечно, все эти числа при желании можно восстановить в уме, просто последовательно умножая их друг на друга. Однако, когда вам предстоит решить несколько показательных неравенств, причём каждое следующее сложнее предыдущего, то последнее, о чём хочется думать — это степени каких-то там чисел. И в этом смысле данные задачи являются более сложными, нежели «классические» неравенства, которые решаются методом интервалов.
Надеюсь, этот урок помог вам в освоении данной темы. Если что-то непонятно — спрашивайте в комментариях. И увидимся в следующих уроках.:)