Как решать миноры матрицы
Как найти обратную матрицу?
Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.
Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число . Произведение данных чисел равно единице:
. С матрицами всё похоже! Произведение матрицы
на обратную ей матрицу
равно
– единичной матрице, которая является матричным аналогом числовой единицы. Однако обо всём по порядку – сначала решим важный практический вопрос, а именно, научимся эту самую обратную матрицу находить.
Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители. Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.
Есть? Тогда поехали дальше. А хотя… ехать могут все, если что-то не знаете, я буду ставить нужную ссылку по ходу объяснений.
Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований.
Сегодня мы изучим первый, более простой способ.
Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу . Обратную матрицу
можно найти по следующей формуле:
, где
– определитель матрицы
,
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
Понятие обратной матрицы существует только для квадратных матриц, матриц «два на два», «три на три» и т.д.
Обозначения: Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом
Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется найти обратную матрицу для матрицы «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.
Найти обратную матрицу для матрицы
Решаем. Последовательность действий удобно разложить по пунктам.
1) Сначала находим определитель матрицы.
Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?
Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ.
В рассматриваемом примере, как выяснилось, , а значит, всё в порядке.
2) Находим матрицу миноров .
Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель.
Матрица миноров имеет такие же размеры, как и матрица , то есть в данном случае
.
Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.
Возвращаемся к нашей матрице
Сначала рассмотрим левый верхний элемент:
Как найти его минор?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Оставшееся число и является минором данного элемента, которое записываем в нашу матрицу миноров:
Рассматриваем следующий элемент матрицы :
Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:
То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:
Аналогично рассматриваем элементы второй строки и находим их миноры:
Готово.
– матрица миноров соответствующих элементов матрицы
.
3) Находим матрицу алгебраических дополнений .
Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:
Именно у этих чисел, которые я обвел в кружок!
– матрица алгебраических дополнений соответствующих элементов матрицы
.
4) Находим транспонированную матрицу алгебраических дополнений .
Что такое транспонирование матрицы, и с чем это едят, смотрите в лекции Действия с матрицами.
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
5) Ответ.
Вспоминаем нашу формулу
Всё найдено!
Таким образом, обратная матрица:
Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами.
Как проверить решение?
Необходимо выполнить матричное умножение либо
Проверка:
Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.
Таким образом, обратная матрица найдена правильно.
Если провести действие , то в результате тоже получится единичная матрица. Это один из немногих случаев, когда умножение матриц перестановочно, более подробную информацию можно найти в статье Свойства операций над матрицами. Матричные выражения. Также заметьте, что в ходе проверки константа (дробь) выносится вперёд и обрабатывается в самом конце – после матричного умножения. Это стандартный приём.
Переходим к более распространенному на практике случаю – матрице «три на три»:
Найти обратную матрицу для матрицы
Алгоритм точно такой же, как и для случая «два на два».
Обратную матрицу найдем по формуле: , где
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
1) Находим определитель матрицы.
Здесь определитель раскрыт по первой строке.
Также не забываем, что , а значит, всё нормально – обратная матрица существует.
2) Находим матрицу миноров .
Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел.
Я подробно рассмотрю парочку миноров:
Рассмотрим следующий элемент матрицы:
МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Оставшиеся четыре числа записываем в определитель «два на два»
Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить:
Всё, минор найден, записываем его в нашу матрицу миноров:
Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.
Ну и для закрепления – нахождение еще одного минора в картинках:
Остальные миноры попробуйте вычислить самостоятельно.
Окончательный результат:
– матрица миноров соответствующих элементов матрицы
.
То, что все миноры получились отрицательными – чистая случайность.
3) Находим матрицу алгебраических дополнений .
В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:
В данном случае:
– матрица алгебраических дополнений соответствующих элементов матрицы
.
4) Находим транспонированную матрицу алгебраических дополнений .
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
5) Ответ:
Проверка:
Таким образом, обратная матрица найдена правильно.
Как оформить решение на чистовик? Примерный образец чистового оформления задания можно найти на странице Правило Крамера. Метод обратной матрицы в параграфе, где идет речь о матричном методе решения системы линейных уравнений. По существу, основная часть упомянутой задачи – и есть поиск обратной матрицы.
Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).
В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.
Иногда обратную матрицу требуется найти методом Гаусса-Жордана, но второй способ доступен для студентов с приличной техникой элементарных преобразований.
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам
Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений.
В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме «Матрицы. Виды матриц. Основные термины». Также нам понадобятся некоторые формулы для вычисления определителей. Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.
Этот минор несложно вычислить, используя формулу №2 из темы вычисления определителей второго и третьего порядков:
Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков:
Например, рассмотрим такую матрицу:
Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:
Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.
Естественно, что мы могли взять иные строки и столбцы, – например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.
Для примера рассмотрим такую матрицу:
Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков:
Данный пример, конечно, тривиальный, так как его цель – наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.
Введём ещё одно понятие – окаймляющий минор.
Для примера обратимся к такой матрице:
Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:
Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.
Для примера рассмотрим квадратную матрицу пятого порядка:
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Как решать миноры матрицы
.
Пример. .
Определение 3. Алгебраическим дополнением A ij к элементу a ij квадратной матрицы называется число A ij =
.
Пример. Найдем алгебраическое дополнение к элементу a 33.
.
Теорема 1. Определитель равен сумме попарных произведений элементов любой строки на их алгебраические дополнения.
Теорема 2. Сумма попарных произведений элементов любой строки определителя на алгебраические дополнения к соответствующим элементам другой строки равна нулю.
Вычисление определителей порядка n >3 сводится к вычислению определителей второго и третьего порядка с помощью теоремы 1 и свойства 5 определителя.
по первому столбцу
Перед разложением определителя для удобства получают в одном из столбцов нули. Это сокращает объемы вычислений. Для этого используют пятое свойство определителя. Одну из строк умножают на некоторые числа и складывают с другими строками.
Общие сведения
При решении систем, состоящих из алгебраических и дифференциальных уравнений, для удобной их записи применяется таблица. Она содержит строки и столбцы, пересечение которых определяется элементами. Количество строк характеризуется числом уравнений, а столбцов — количеством неизвестных величин. После построения такой таблицы решение сводится к работе с ней. Совокупность элементов такой таблицы называют матрицей.
Над несколькими матрицами можно выполнять различные арифметические действия: преобразовывать, умножать, складывать. При этом допускается умножение строки на числа, отличные от нуля, сложение строк между собой и изменение их положения. Обозначают матрицу с помощью заглавной буквы латинского алфавита. Характеризуется она размерностью и может быть квадратной или прямолинейной.
При математической записи используют индексы. Первый из них обозначает строки, а второй — столбцы. На месте их пересечения находится элемент. То есть таблица вида m x n записывается как A = (aij)m, n, где: aij — элемент матрицы, располагающийся на пересечении и-той строки и йо-того столбца. Ранг же матрицы показывает наибольшее число линейно независимых столбцов или строк, при этом он не может превосходить размерность.
Важным параметром квадратной матрицы является определитель (детерминант). При его нахождении используется минор. Существует несколько его разновидностей:
В общем случае под определением минора матрицы понимают определитель, находимый с помощью удаления строки и столбца определённого элемента. При рассмотрении алгебраических дополнений совместно с ними используют понятие угловой минор.
Квадратная матрица
Минор принято разделять на элементный и матричный. Для лучшего понимания сначала следует разобрать минор квадратной матрицы. Рассматривать нужно её, так как минор — это определитель, а он бывает только у квадратной системы уравнений. Параметр элемента матрицы и определителя находят одинаково.
Вычисление минора обычно не вызывает трудностей. При этом стоит помнить простые правила определения детерминанта:
Пусть необходимо определить параметр элемента i, j. Для этого нужно посмотреть на записанную таблицу и выделить и-тую строчку и йо-тый столбец. На их пересечении будет стоять цифра, которая соответствует элементу aij. После вычёркивания элементов, расположенных от него по вертикали и горизонтали, оставшиеся в наборе и будут являться минором матрицы или определителя.
Например, пусть имеется определитель вида:
Нужно найти минор два три. На пересечении второй строчки и третьего столбца стоит цифра минус два. Убрав вторую соответствующую ей вертикаль и третью горизонталь, можно получить искомый минор M23:
Теперь, чтобы найти минор единицы, нужно вычислить определитель полученной матрицы четвёртого порядка. Для этого удобно использовать теорему Лапласа для разложения по любой строке. Выбирать лучше ту, где стоят нули. После преобразования полученный ответ и будет минором. Аналогично выполняют действия и для определителя.
Главный и базисный определитель
Минором высшего уровня описывают систему, состоящую из столбцов и строк, число которых превышает два. То есть минор восьмого порядка представляет собой определитель, состоящий из восьми столбцов и такого же числа строк. Тут следует отметить, что исходная матрица должна иметь больший порядок.
В таблице высшего порядка можно выделить несколько миноров. Например, в матрице восьмого уровня выделить пять столбцов и пять строк. Брать горизонтальные и вертикальные линии можно произвольно. В местах пересечения будут находиться значения, обозначающие элементы минора пятого порядка.
Записывают их соответственно, начиная с первой строки. После того как все члены выписаны, должен получиться новый определитель пятого порядка. Таких миноров указанного порядка может быть несколько.
В таблице чисел имеется главная диагональ. Начинается она с правого верхнего угла, то есть с элемента a11, и заканчивается на последнем правом элементе. В полученном миноре также можно выделить такую диагональ.
Если взять минор таким способом, что главная его диагональ будет состоять из элементов диагонали исходной таблицы, то такой минор называют главным. Иными словами, эта таблица, которая включает в себя элементы основной диагонали исходной матрицы. При этом необязательно, чтобы в главный минор матрицы были включены все главные элементы. Определитель же, находящийся из первых строк и столбцов, называется угловым минором матрицы.
Базисный определитель показывает, какой наибольший порядок может иметь полученный минор. Например, для системы данных, состоящей из семи строк и восьми столбцов, наибольший определитель может быть седьмого порядка. При этом базисным считается также последний определитель, который не равняется нулю. Если система уравнений имеет девятый порядок и при вычислениях выяснится, что система шестого уровня вырожденная, то предшествующий ему определитель также будет называться базисным. Значение базиса всегда будет наибольшим. Строки и столбцы, из которых состоит базис, называют также базисными. Их может быть несколько.
Когда из исходной таблицы выбран определитель не высшего порядка, то следующий за ним называется окаймляющим. Это значит, что необходимо добавить одну строку и столбец. Такого типа определителей может быть несколько, так как для того, чтобы их построить, можно добавить любую строку или столбец.
Решение задач
Для закрепления материала в школе и высших учебных заведениях учащимся предлагают выполнить расчёт несколько типовых заданий разной сложности. Умение их решать является доказательством понимания теории. Вот некоторые из них рекомендуемые для самостоятельного решения.
Найти в указанной матрице все определители второго уровня и алгебраические дополнения:
Для решения этой задачи нужно рассматривать первую и вторую строчки. Последовательно убирая строки и столбцы методом вычёркивания, можно получить шесть результатов:
В следующей задаче рассматривается квадратная матрица три на три, в которой необходимо найти дополнительную характеристику:
По условию в таблице имеется девять позиций, для которых можно найти дополнительный элемент. При решении нужно последовательно их все перебрать, вычёркивая соответственные столбцы и строки:
В следующем примере необходимо рассчитать первые три алгебраических дополнения. Пусть дана матрица A:
Как видно из примеров, вычисления обычно не вызывают трудностей, но требуют внимательности и усидчивости. Особенно это касается нахождения обратной матрицы. Вычисляется она с помощью алгебраических дополнений, которые равны минорам, умноженным на минус единицу. Довольно часто знаки путают, и в итоге получается неправильный ответ. Поэтому в случае сложных систем есть резон использовать онлайн-калькуляторы.
Использование интернет-калькулятора
В интернете есть определённая группа сайтов, позволяющая выполнять различные математические вычисления в автоматическом режиме. На их страницах содержится специальный скрипт, выполняющий нахождение минора матрицы онлайн любой сложности. При этом от потребителя не требуется никаких особых знаний, он даже и вовсе может ничего не понимать в алгебраических вычислениях.
Всё, что ему необходимо будет сделать для получения ответа, — это ввести исходные данные в предложенную форму и нажать кнопку «Вычислить». Система автоматически определит нужный алгоритм и, используя свойства матрицы, выведет на экран ответ. При этом, кроме результата, пользователю будет предоставлена возможность ознакомиться с подробным решением.
По отзывам потребителей, из множества таких сервисов можно выделить пять следующих сайтов:
Все указанные сайты доступны на русском языке, бесплатны, имеют простой и понятный интерфейс. На их страницах содержится справочная и теоретическая математическая информация. Кроме неё, для каждого раздела приводится типовой пример с объяснением. Использование онлайн-калькуляторов поможет сэкономить время и научит правильно выполнять действия по вычислению миноров.
Их использование будет полезным не только ученикам или студентам, желающим научиться самостоятельно решать задачи, но и инженерам, выполняющим сложные вычисления. Для специалистов они довольно востребованы, так как при самостоятельном решении небольшая ошибка по невнимательности приведёт к неправильному ответу, что исключено при расчёте в автоматическом режиме.