Как решать комплексные числа примеры

Комплексные числа

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

Вычислить сумму и разность заданных комплексных чисел:

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

Аналогично выполним вычитание чисел:

Выполнить умножение и деление комплексных чисел:

Так, теперь разделим первое число на второе:

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

Для возведения в квадрат достаточно умножить число само на себя:

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

Найдем чем равен аргумент:

$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$

Записываем в тригонометрическом виде:

Преобразуем в алгебраическую форму для наглядности:

Представим число в тригонометрической форме. Найдем модуль и аргумент:

Используем знакомую формулу Муавра для вычисления корней любой степени:

Источник

Выражения, уравнения и системы уравнений
с комплексными числами

Сегодня на занятии мы отработаем типовые действия с комплексными числами, а также освоим технику решения выражений, уравнений и систем уравнений, которые эти числа содержат. Данный практикум является продолжением урока Комплексные числа для чайников, и поэтому если вы неважно ориентируетесь в теме, то, пожалуйста, пройдите по указанной выше ссылке. Ну а более подготовленным читателям предлагаю сразу же разогреться:

Решение: итак, требуется подставить в «страшную» дробь, провести упрощения, и перевести полученное комплексное число в тригонометрическую форму. Плюс чертёж.

Как лучше оформить решение? С «навороченным» алгебраическим выражением выгоднее разбираться поэтапно. Во-первых, меньше рассеивается внимание, и, во-вторых, если таки задание не зачтут, то будет намного проще отыскать ошибку.

…Да, такой вот Квазимодо от комплексных чисел получился…

Чтобы избавиться от дроби, умножим числитель и знаменатель на сопряженное знаменателю выражение. При этом в целях применения формулы разности квадратов следует предварительно (и уже обязательно!) поставить отрицательную действительную часть на 2-е место:

А сейчас ключевое правило:

НИ В КОЕМ СЛУЧАЕ НЕ ТОРОПИМСЯ! Лучше перестраховаться и прописать лишний шаг.
В выражениях, уравнениях и системах с комплексными числами самонадеянные устные вычисления чреваты, как никогда!

На завершающем шаге произошло хорошее сокращение и это просто отличный признак.

Примечание: строго говоря, здесь произошло деление комплексного числа на комплексное число 50 (вспоминаем, что ). Об этом нюансе я умалчивал до сих пор и о нём мы ещё поговорим чуть позже.

Обозначим наше достижение буквой

Представим полученный результат в тригонометрической форме. Вообще говоря, здесь можно обойтись без чертежа, но коль скоро, требуется – несколько рациональнее выполнить его прямо сейчас:

Вычислим модуль комплексного числа:

Если выполнять чертёж в масштабе 1 ед. = 1 см (2 тетрадные клетки), то полученное значение легко проверить с помощью обычной линейки.

Угол элементарно проверяется транспортиром. Вот в чём состоит несомненный плюс чертежа.

Таким образом: – искомое число в тригонометрической форме.

Выполним проверку:
, в чём и требовалось убедиться.

Незнакомые значения синуса и косинуса удобно находить по тригонометрической таблице.

Ответ:

Аналогичный пример для самостоятельного решения:

Постарайтесь не пропускать учебные примеры. Кажутся-то они, может быть, и простыми, но без тренировки «сесть в лужу» не просто легко, а очень легко. Поэтому «набиваем руку».

Краткое решение и ответ в конце урока.

Нередко задача допускает не единственный путь решения:

Делая дробь правильной, приходим к выводу, что можно «скрутить» 4 оборота ( рад.):

Как видите, одно «лишнее» действие. Желающие могут довести решение до конца и убедиться, что результаты совпадают.

В условии ничего не сказано о форме итогового комплексного числа, поэтому:

Ответ:

Но «для красоты» либо по требованию результат нетрудно представить и в алгебраической форме:

Краткое решение и ответ в конце урока.

Выражения – хорошо, а уравнения – лучше:

Уравнения с комплексными коэффициентами

Чем они отличаются от «обычных» уравнений? Коэффициентами =)

В свете вышеприведённого замечания начнём с этого примера:

Решение, в принципе, тоже можно оформить пошагово, но в данном случае овчинка выделки не стОит. Первоначальная задача состоит в том, чтобы упростить всё, что не содержит неизвестной «зет», в результате чего уравнение сведётся к виду :

Уверенно упрощаем среднюю дробь:

Результат переносим в правую часть и находим разность:

По правилу пропорции выражаем «зет»:

Теперь можно снова разделить и умножить на сопряжённое выражение, но подозрительно похожие числа числителя и знаменателя подсказывают следующий ход:

Ответ:

В целях проверки подставим полученное значение в левую часть исходного уравнения и проведём упрощения:

– получена правая часть исходного уравнения, таким образом, корень найден верно.

…Сейчас-сейчас… подберу для вас что-нибудь поинтереснее… держите:

Конечно же… как можно без него прожить:

Квадратное уравнение с комплексными коэффициентами

На уроке Комплексные числа для чайников мы узнали, что квадратное уравнение с действительными коэффициентами может иметь сопряжённые комплексные корни, после чего возникает закономерный вопрос: а почему, собственно, сами коэффициенты не могут быть комплексными? Сформулирую общий случай:

Квадратное уравнение с произвольными комплексными коэффициентами (1 или 2 из которых либо все три могут быть, в частности, и действительными) имеет два и только два комплексных корня (возможно один из которых либо оба действительны). При этом корни (как действительные, так и с ненулевой мнимой частью) могут совпадать (быть кратными).

Квадратное уравнение с комплексными коэффициентами решается по такой же схеме, что и «школьное» уравнение, с некоторыми отличиями в технике вычислений:

Найти корни квадратного уравнения

Решение: на первом месте расположена мнимая единица, и, в принципе, от неё можно избавиться (умножая обе части на ), однако, в этом нет особой надобности.

Для удобства выпишем коэффициенты:

Не теряем «минус» у свободного члена! …Может быть не всем понятно – перепишу уравнение в стандартном виде :

А вот и главное препятствие:

Применение общей формулы извлечения корня (см. последний параграф статьи Комплексные числа для чайников) осложняется серьёзными затруднениями, связанными с аргументом подкоренного комплексного числа (убедитесь сами). Но существует и другой, «алгебраический» путь! Корень будем искать в виде:

Возведём обе части в квадрат:

Два комплексных числа равны, если равны их действительные и их мнимые части. Таким образом, получаем следующую систему:

Систему проще решить подбором (более основательный путь – выразить из 2-го уравнения – подставить в 1-е, получить и решить биквадратное уравнение). Предполагая, что автор задачи не изверг, выдвигаем гипотезу, что и – целые числа. Из 1-го уравнения следуют, что «икс» по модулю больше, чем «игрек». Кроме того, положительное произведение сообщает нам, что неизвестные одного знака. Исходя из вышесказанного, и ориентируясь на 2-е уравнение, запишем все подходящие ему пары:

Очевидно, что 1-му уравнению системы удовлетворяют две последние пары, таким образом:

Не помешает промежуточная проверка:

что и требовалось проверить.

В качестве «рабочего» корня можно выбрать любое значение. Понятно, что лучше взять версию без «минусов»:

Находим корни, не забывая, кстати, что :

Ответ:

Проверим, удовлетворяют ли найденные корни уравнению :

Таким образом, решение найдено правильно.

По мотивам только что разобранной задачи:

Найти корни уравнения

А теперь можно расслабиться – в этом примере вы отделаетесь лёгким испугом 🙂

Решить уравнение и выполнить проверку

Решения и ответы в конце урока.

Заключительный параграф статьи посвящён

системе уравнений с комплексными числами

Расслабились и… не напрягаемся =) Рассмотрим простейший случай – систему двух линейных уравнений с двумя неизвестными:

Решить систему уравнений. Ответ представить в алгебраической и показательной формах, изобразить корни на чертеже.

Систему реально решить «детским» способом (выразить одну переменную через другую), однако гораздо удобнее использовать формулы Крамера. Вычислим главный определитель системы:

, значит, система имеет единственное решение.

Повторюсь, что лучше не торопиться и прописывать шаги максимально подробно:

Домножаем числитель и знаменатель на мнимую единицу и получаем 1-й корень:

Перед тем, как продолжать дальше, целесообразно проверить решение. Подставим найденные значения в левую часть каждого уравнения системы:

Получены соответствующие правые части, ч.т.п.

Представим корни в показательной форме. Для этого нужно найти их модули и аргументы:

1) – арктангенс «двойки» вычисляется «плохо», поэтому так и оставляем:

Ответ:

Решить систему уравнений

Найти произведение корней и представить его в тригонометрической форме.

Краткое решение совсем близко.

И в заключение ответим на экзистенциальный вопрос: для чего нужны комплексные числа? Комплексные числа нужны для расширения сознания выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерно-технических расчетах на практике.

На этом курс Опытного пользователя комплексных чисел завершён – сертификат вам на стену и новых достижений!

Пример 4: Решение:

Пример 6: Решение:

Умножим обе части уравнения на :

Ответ:

Проверка: подставим в исходное уравнение :

верное равенство;

верное равенство.
Что и требовалось проверить.

Пример 11: Решение: систему решим методом Крамера:

Таким образом, система имеет единственное решение.
Найдём произведение корней:

Представим результат в тригонометрической форме:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Введение в комлексные числа

Выяснив, что многие знакомые программисты не помнят комплексные числа или помнят их очень плохо, я решил сделать небольшую шпаргалку по формулам.

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

А школьники могут что-то новое узнать 😉
// Всех кого заинтересовал прошу под кат.

Итак, комплексные числа эта такие числа, которые можно записать как

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Где x, y вещественные числа(т.е привычные всем числа), а i — число, для которого
выполняется равенство

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

x называется действительной частью, y — мнимой.

Это алгебраическая форма записи комплексного числа.

Существует также тригонометрическая форма записи комплексного числа z:

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

С введением, пожалуй, все.

Переходим к самому интересному — операциям над комплексными числами!
Для начала рассмотрим сложение.

У нас есть два таких комплексных числа:

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Как же их сложить?
Очень просто: сложить действительную и мнимую части.
Получим число:

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Все просто, не так ли?
Вычитание выполняется аналогично сложению.
Нужно просто вычесть из действительной части 1 числа действительную часть 2 числа,
а потом проделать тоже с мнимой частью.
Получим число

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Умножение выполняется вот так:

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Напомню, x это действительная часть, y — мнимая.
Деление выполняется вот так:

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Кстати, поддержка комплексных чисел есть в стандартной библиотеке Python:

Вместо i используется j.
Кстати, это потому что Python принял конвенцию инженеров-электриков, у которых
буква i обозначает электрический ток.
Задавайте свой вопросы, если они есть, в комментариях.
Надеюсь, вы узнали для себя что-то новое.

UPD: В комментариях просили рассказать о практическом применении.
Так вот комплексные числа нашли широкое практическое применение в авиации
(подъемная сила крыла) и в электричестве.
Как видете, очень нужная вещь 😉

Источник

Основные действия над комплексными числами

Комплексные числа — определение и основные понятия

Обычные числа представляют собой множество действительных чисел, для обозначения которых используют букву R. Каждое число из множества можно отметить на числовой прямой.

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

К действительным числам носят:

Каждая точка на числовой прямой характеризуется некоторым действительным числом. Комплексное число является двумерным числом и записано в виде:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Где а и b являются действительными числами, i представляет собой так называемую мнимую единицу.

Уравнение можно мысленно поделить на несколько частей:

Следует отметить, что a + bi является единым числом, а не сложением. Места действительной и мнимой частей в уравнении можно менять:

Мнимую единицу допускается переставлять:

При таких операциях смысл выражения остается прежним. Однако стандартная запись комплексного числа имеет такой вид:

Данное утверждение можно привести в виде геометрической интерпретации. Тогда комплексные числа изображают на комплексной плоскости.

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

С помощью R обозначаю множество действительных чисел. В случае, когда требуется обозначить множество комплексных чисел, принято использовать букву С. Наличие буквы С на чертеже говорит о том, что на нем представлена комплексная плоскость. Данная плоскость включает две оси:

Re z — является действительной осью;

Im z — представляет собой мнимую ось.

Правила оформления такого графика практически не отличаются от требований к чертежам для декартовой системы координат. По осям задают масштаб и отмечают:

С помощью комплексной плоскости можно построить заданные комплексные числа:

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

Можно рассмотреть следующие комплексные числа:

Действительные числа являются частным случаем комплексных чисел. Действительная ось Re z обозначает в точности множество действительных чисел R, то есть на данной оси расположены все числа с обычными свойствами. Можно сформулировать справедливое утверждение: множество действительных чисел R представляет собой подмножество множества комплексных чисел С.

Данные числа являются комплексными числами, мнимая часть которых нулевая:

Мнимые числа с нулевой действительностью, которые расположены на мнимой оси Im z:

Есть ряд чисел с ненулевыми действительной и мнимой частью:

Для их обозначения используют точки на комплексной плоскости. К таким точкам проводят радиус-векторы из начала координат. Радиус-векторы не принято чертить к числам, которые расположены на осях и сливаются с ними.

Формы, как записываются

Алгебраическая запись комплексного числа имеет такой вид:

Кроме данной формы существует еще несколько способов для записи. Удобным и наглядным геометрическим представлением является:

z = a + bi в виде вектора с координатами (а;b) на декартовой плоскости, либо точкой — концом вектора с аналогичными координатами.

Как решать комплексные числа примеры. Смотреть фото Как решать комплексные числа примеры. Смотреть картинку Как решать комплексные числа примеры. Картинка про Как решать комплексные числа примеры. Фото Как решать комплексные числа примеры

В этом случае пару комплексных чисел представляют в виде суммы соответствующих векторов, которую рассчитывают с помощью правила параллелограмма. Согласно теореме Пифагора, длина вектора с координатами (а;b) определяется, как:

Данная величина представляет собой модуль комплексного числа z = a + bi и имеет такое решение:

Вектор и положительное направление оси абсцисс образуют угол, отсчитанный против часовой стрелки. Данный угол называют аргументом комплексного числа z и обозначают, как Arg z. Аргумент имеет неоднозначное определение с точностью до прибавления величины, которая кратна 2π радиан. При повороте на такой угол вокруг начала координат вектор не изменяется.

В том случае, когда вектор длиной r с положительным направлением оси абсцисс составляет угол ϕ, его координаты будут следующими:

\(\left(r*\cos \varphi ;r*\sin \varphi \right)\)

Таким образом, получают тригонометрическую форму записи комплексного числа:

\(z=\left|z \right|*\left(\cos (Arg z)+i\sin (Arg z) \right)\)

Из-за более простого вида вкладок комплексные числа, как правило, представляют в тригонометрической форме.

Существует показательная форма для записи комплексных чисел. Какое-либо комплексное число, не равное нулю, можно представить в показательной форме:

Где \(\left|z \right|\) является модулем комплексного числа,

\(\varphi\) представляет собой аргумент комплексного числа.

Представить комплексное число в показательной форме можно с помощью нескольких действий:

Основные действия над комплексными числами с примерами

Манипуляции с комплексными числами выполняют так же, как с действительными числами. Арифметические действия могут быть следующими:

Складывать и вычитать комплексные числа можно с помощью правила:

(a + bi) ± (c + di) = (a ± c) + (b ± d)i

Умножение комплексных чисел выполняют таким образом:

(a + bi) · (c + di) = (ac – bd) + (ad + bc)i

В данном случае \(i^<2>=-1\)

Число \(\bar=a-bi\) является комплексно-сопряженным к \(z=a+bi\)

С помощью равенства \(z*\bar=a^<2>+b^<2>\) можно установить, как делить одно комплексное число на другое, не равное нулю, комплексное число:

Сложение комплексных чисел

Ели требуется сложить пару комплексных чисел:

Сначала нужно найти сумму их действительных и мнимых частей:

Таким образом, сумма какого-либо количества слагаемых определяется путем сложения действительных частей и сложением мнимых частей. В случае комплексных чисел справедливо правило первого класса, которое гласит, что от перестановки слагаемых их сумма остается прежней:

Вычитание комплексных чисел

Разность комплексных чисел:

Действие аналогично сложению. Разница заключается в необходимости выделения скобками вычитаемого числа. Далее следует раскрыть скобки и изменить знак:

Полученное в результате число обладает двумя частями. Действительная часть является составной:

Наглядно ответ будет записан в такой форме:

Умножение комплексных чисел

Можно найти произведение комплексных чисел:

Произведение будет записано таким образом:

Раскрыть скобки следует, руководствуясь правилом умножения многочленов, учитывая, что \(i^<2>=-1\)

Для того чтобы перемножить многочлены, требуется каждый член одного многочлена умножить на каждый член другого многочлена. Таким образом:

Как и в случае со сложением, произведение комплексных чисел перестановочно, то есть справедливо равенство:

Деление комплексных чисел

На примере комплексных чисел:

требуется определить частное:

Частное будет записано в таком виде:

Делить числа необходимо с помощью метода умножения знаменателя и числителя на сопряженное знаменателю выражение. В этом случае пригодится стандартная формула:

По условию знаменатель 7-6i. В данном знаменателе уже есть (а-b), поэтому сопряженным выражением в таком случае является (a+b), то есть 7+6i. Исходя из правила, знаменатель умножают на 7+6i. Сохранить равенство можно с помощью умножения числителя на то же самое число 7+6i:

Затем в числителе необходимо раскрыть скобки, то есть умножить пару чисел, согласно отмеченному ранее правилу. Для знаменателя требуется использовать формулу \((a-b)(a+b)=a^<2>-b^<2>\) и \(i^<2>=-1\)

Уравнение будет записано в таком виде:

Нахождение аргумента

При выполнении действий с модулем комплексных чисел необходимо руководствоваться формулой:

Для поиска аргумента комплексного числа требуется использовать определенную формулу для конкретного случая. Уравнение подбирается, исходя из положения числа z = a + bi в координатной четверти. Существует всего три таких варианта:

Извлечение корня из комплексных чисел

Комплексные числа в тригонометрической форме умножают таким образом:

z_<1>*z_<2>=\left|z_ <1>\right|*\left|z_ <2>\right|*(\cos (Arg z_<1>+Arg z_<2>)+i\sin (Arg z_<1>+Arg z_<2>))2

При умножении пары комплексных чисел их модули перемножаются, а аргументы складываются. Исходя из этого утверждения, вытекают формулы Муавра:

С помощью этого равенства можно извлечь корни любой степени из комплексных чисел. Корень n-й степени из числа z представляет собой комплексное число w, которое:

Где k может обладать любым значением из множества (0, 1, …, n-1).

Таким образом, в любом случае имеется ровно n корней n-ой степени из комплексного числа. На плоскости все они будут расположены в вершинах правильного n-угольника.

Возведение комплексных чисел в степень

В качестве примера можно возвести в квадрат комплексное число:

Первый способ заключается в записи степени в виде произведения множителей:

Далее необходимо перемножить числа, согласно правилу умножения многочленов.

Второй метод заключается в использовании уравнения для сокращенного умножения:

Выражение примет следующий вид:

В случае комплексного числа можно достаточно просто записать определенную формулу для сокращенного умножения:

Такую же формулу можно представить для расчета квадрата разности, куба суммы и куба разности. Если необходимо возвести в 5-ю, 10-ю или любую другую степень комплексное число, следует воспользоваться тригонометрической формой комплексного числа, то есть формулу Муавра. К примеру, дано комплексное число в тригонометрической форме:

\(x = <-b \pm \sqrt\over 2a>z=\left|z \right|*\left(\cos \varphi +i\sin \varphi \right)\)

Данное число требуется возвести в натуральную степень n. Для этого необходимо использовать уравнение:

\(z^=\left|z \right|^*\left(\cos (n\varphi) +i\sin (n\varphi) \right)\)

Представленная формула вытекает из правила для умножения комплексных чисел, которые записаны в тригонометрической форме. Для того чтобы найти произведение чисел, требуется:

\(z_<1>=\left|z_ <1>\right|*(\cos \varphi _<1>+i\sin \varphi _<1>)\)

\(z_<2>=\left|z_ <2>\right|*(\cos \varphi _<2>+i\sin \varphi _<2>)\)

Далее требуется перемножить модули этих комплексных чисел и найти сумму аргументов:

\(x = <-b \pm \sqrt\over 2a>z_<1>* z_<2>=\left|z_ <1>\right|*\left|z_ <2>\right|*(\cos( \varphi _<1>+\varphi _<2>)+i\sin ( \varphi _<1>+\varphi _<2>)\)

Аналогичный порядок действий для показательной формы комплексного числа:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *