Как решать десятичные логарифмы
Десятичные и натуральные логарифмы
п.1. Десятичный логарифм и его свойства
Основание десятичных логарифмов \(10\gt 1\), поэтому они обладают всеми свойствами логарифмов с основанием больше единицы (см. §30 данного справочника).
Но у десятичных логарифмов есть также целых ряд дополнительных свойств, благодаря которым в докомпьютерную эпоху они широко использовались для трудоемких вычислений. Роль калькулятора тогда выполняли логарифмическая таблица и логарифмическая линейка.
| Число b | Стандартный вид | Характеристика | Мантисса b | Унифицированная запись | Логарифм числа \(\lg b\) |
| 420 | 4,2·10 2 | 2 | 0,623 | 2,623 | 2,623 |
| 42 | 4,2·10 1 | 1 | 0,623 | 1,623 | 1,623 |
| 4,2 | 4,2 | 2 | 0 | 0,623 | 0,623 |
| 0,42 | 4,2·10 –1 | –1 | 0,623 | \(\overline<1>,623\) | –0,377 |
| 0,042 | 4,2·10 –2 | –2 | 0,623 | \(\overline<2>,623\) | –1,377 |
Если использовать унифицированную запись, как в представленной таблице, то мантисса всегда лежит в промежутке \(0\lt \lg a\lt 1\). У чисел, отличающихся только порядком, мантисса одинакова. Можно составить таблицы мантисс и пользоваться ими для умножения и деления, «разбавляя» их несложным сложением и вычитанием целых характеристик по необходимости.
Первые таблицы логарифмов были изданы в 1617 году оксфордским математиком Бригсом. Таблицы пересчитывались, дополнялись и переиздавались вплоть до 70-х гг. ХХ века, когда на столах стали появляться калькуляторы.
Таблицы Брадиса, которыми по традиции пользуются наши школьники с 1921 года, издаются до сих пор и постепенно перекочевывают в Интернет.
Непосредственная связь десятичных логарифмов с десятичной системой исчисления делает их удобным инструментом для оценки порядка числа и сравнения чисел.
В практике приближенных вычислений используется следующая оценочная таблица:
Относительная погрешность этих приближений (кроме \(\lg 3)\) \(\delta\sim 0,5\text<%>\)
Например:
Сравним \(\log_23\) и \(log_58\)
Сравнивая с помощью оценки, получаем: \begin
п.2. Натуральный логарифм и его свойства
Основание натуральных логарифмов e>1, поэтому они обладают всеми свойствами логарифмов с основанием больше единицы (см. §30 данного справочника).
Для приближенного вычисления значения натурального логарифма используется «ряд Меркатора»:
Например:
С точностью до первого слагаемого: \(\ln 1,3=\ln(1+0,3)\approx 0,3\)
До второго слагаемого: \(\ln 0,3\approx 0,3-\frac<0,3^2><2>=0,255\)
До третьего слагаемого: \(\ln 0,3\approx 0,3-\frac<0,3^2><2>+\frac<0,3^3><3>=0,264\) и т.д.
Натуральные логарифмы настолько распространены в различных областях научных исследований, что когда вообще речь заходит «логарифмах», по умолчанию подразумевают именно их. Если же у вас в работе какие-то другие «логарифмы» (по основанию 2 или 10, например), это нужно уточнять.
п.3. Примеры
Пример 1. Найдите \(x\):
a) \( \lg x=2\lg a+\lg 7 \)
\(\lg x=\lg a^2+\lg 7=\lg(7a^2)\)
\(x=7a^2\)
Пример 2. Прологарифмируйте по основанию 10:
a) \(x=\frac<3a^2\sqrt[3]>
Расчет относительной погрешности приближения на границах окрестностей \(|x|\lt 0,1\) и \(|x|\lt 0,2\) представлен в таблице:
Десятичный логарифм
Определение. Десятичный логарифм — логарифм по основанию 10.
Калькулятор десятичных логарифмов
Свойства десятичного логарифмов
lg( x · y ) = lg x + lg y
lg 100 = lg 10 2 = 2
lg 1000 = lg 10 3 = 3
Запишем очевидное равенство:
lg b · lg a = lg a · lg ab
Возведем 10 в соответствующие степени
10 lg b · lg a = 10 lg a · lg b
(10 lg b ) lg a = (10 lg a ) lg b
Используем формулы логарифма произведения и степени получим:
lg 6 = lg (2·3)= lg 2 + lg 3 = a + b ;
lg 30 = lg (5·2·3)= lg 5 + lg 2 + lg 3 = a + b + c ;
Вычислить log9 5 · log25 27.
Перейдем к основе 10:
log9 5 · log25 27 = lg 5 lg 9 · lg 27 lg 25
Используем свойство логарифма степени lg x n = n lg x :
lg 5 lg 9 · lg 27 lg 25 = lg 5 lg 3 2 · lg 3 3 lg 5 2 = lg 5 2 lg 3 · 3 lg 3 2 lg 5 = 3 4
Перейдем к основе 10:
log 30 8 = lg 8 lg 30 = lg 2 3 lg (3 · 10) =
Используем свойство логарифма степени, произведения, частного и то что 2= 10 5 :
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Определение десятичного логарифма и как его найти
Десятичные логарифмы широко применялись в вычислениях до появления компактных калькуляторов. Они позволяли значительно облегчить сложные расчеты, что существенно снижало вероятность ошибки.
Десятичный логарифм числа – что это такое в математике
Логарифмом числа k по основанию n (logn k) называется такое число m, при котором верно равенство:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Логарифм будет иметь смысл только при соблюдении ряда условий:
Если за основание логарифма взята цифра 10, то такой логарифм называется десятичным. Его принято обозначать знаком lg и не указывать основание, равное 10. Например, правильно записывать lg 20, а не log10 20.
Десятичные логарифмы обладают теми же особенностями, что и любые другие логарифмы при основании больше, чем 1. Например, большему из нескольких положительных чисел будет соответствовать и больший десятичный логарифм. Десятичный логарифм числа, которое больше 0, но меньше 1, будет отрицательным, а больше единицы – положительным.
Десятичные логарифмы обладают рядом характерных признаков:
Определение и формулы десятичного логарифма
Десятичным логарифмом числа k является решение уравнения: 10 n =k
В алгебре свойства десятичных логарифмов описываются целым рядом формул. Их использование позволяет значительно проще решать сложные задачи, снижает вероятность ошибок.
Основными формулами десятичных логарифмов являются:
До изобретения калькуляторов вышеописанные формулы использовались очень широко. Например, они позволяют с легкостью выполнить умножение многозначных чисел. Для этого необходимо воспользоваться простым алгоритмом:
Аналогичным образом можно выполнить и деление многозначных чисел. Только в данном случае логарифмы следует не складывать, а вычитать.
Использование десятичных логарифмов дает возможность даже без калькулятора выполнить извлечение из корня или возведение в степень.
В настоящее время десятичные логарифмы практически полностью вытеснены натуральными. Они сохраняются только в исторически укоренившихся областях математики, например, в построении логарифмической шкалы.
Отрицательные десятичные логарифмы представляют в искусственной форме. В ней они имеют отрицательную характеристику и положительную мантиссу.
Иначе эту запись можно представить так:
Для перевода десятичного отрицательного логарифма в искусственную форму необходимо увеличить на единицу абсолютную величину характеристики. Над полученным числом поставить знак «минус». Вычесть из девяти все цифры мантиссы кроме последней, не равной нулю.
Ее следует вычесть из десяти. Полученные в ходе вычитания разности записать на тех же местах мантиссы, где находились вычитаемые числа. Нули на конце остаются без изменений.
График десятичного логарифма
При рассмотрении логарифмируемого числа в качестве переменной получаем функцию:
Она будет определена при всех значениях x больше нуля. Область значений функции лежит в пределе:
График десятичного логарифма представляет кривую линию, называемую логарифмикой.
Всюду, где функция определена, она дифференцируема, непрерывна и монотонно возрастает. Ее производную можно задать формулой:
Ось ординат рассматриваемой функции является вертикальной асимптотой, так как
Как правильно решать задачи на десятичных логарифмах, примеры
Рассмотрим примеры решения задач с использованием десятичных логарифмов.
Задача 1. Вычислить значение выражения
Для решения данного примера воспользуемся формулой суммы:
Задача 2. Упростите выражение:
В данном случае необходимо воспользоваться формулой степени:
Задача 3. Вычислить значение выражения
Воспользуемся свойством логарифма степени и получим:
Теперь применим свойство частного, откроем скобки и приведем подобные слагаемые:
Понятия и термины
Впервые упоминание о логарифмах встречается в XIX веке в астрономических вычислениях. Сам же термин ввёл в обиход математик Спейдел. В 1893 году обозначать натуральный логарифм буквами ln предложил немецкий учёный Прингсхейм. Но лишь только в книге «Введение в анализ бесконечности» Эйлер дал определения логарифмам и описал их свойства, выделив при этом выражение с основанием равным десяти.
Существует несколько определений логарифмов. Для того чтобы разобраться в сущности термина нужно представить себе любое простое уравнение, содержащее степень. Например, 3 x = 9. Это выражение называется показательным, так как неизвестное число стоит в показателе степени. Равенство будет верным при иксе равному два. Ведь три в квадрате это девять.
Теперь можно рассмотреть другое уравнение: 3 x = 7. Если попробовать его решить, то можно обнаружить, что подобрать неизвестное значение будет довольно сложно. Интуитивно можно понять, что ответ будет располагаться между числом три в степени один и три в степени два. Искомое число и было решено назвать логарифмом. Записывается он как x = log3 7. Читается же формула как икс равный логарифму семи по основанию три.
Цифра, стоящая в нижнем регистре записи, называется основанием, а в верхней части аргументом. То есть любое выражение вида c x = k можно записать как x = logc k. Эта запись очень удобна для обозначения иррациональных чисел.
Логарифм можно записать только при выполнении условия: logp K = b, где pb = k, p > 0, k > 0, p ≠ 0. Существует три вида логарифма:
Десятичный логарифм записывают упрощённой записью: log10. Например, число два можно представить, как lg 100. Эта запись верна, так как используя определение, запись можно переписать в виде: 10 2 = 100. Для того чтобы научиться решать задачи по нахождению логарифмов нужно знать их свойства, формулы сокращённого умножения и правила вычисления степеней.
Свойства и формулы
Формулы сокращённого умножения изучают в средней школе на уроках алгебры. Учащимся предлагается выучить семь основных выражений, собранных в таблицу. С их помощью можно быстро и в уме рассчитывать квадраты даже больших чисел, что используется при нахождении логарифмов. Доказываются они просто раскрытием скобок. Из основных равенств умножения можно выделить следующие:
На этих формулах основаны свойства десятичных логарифмов. Большинство задач можно решить, зная только эти закономерности. Первое свойство вытекает из самого определения выражения: logp p v = v. Для доказательства этого свойства можно использовать рассуждение, что если logі p = v, то i v = p. Тогда отношение logk p / logk I будет равняться: logk i v / logk I = v * logk i / logk I = v = logі p. Что и требовалось доказать.
Второе и третье свойство помогает определить сумму логарифмов и посчитать их разницу. Согласно ему сумма выражений с одинаковым основанием равняется их произведению: logp i + logp c = logp (i * c). А также используется то что разность произведений с одинаковыми основаниями тождественна логарифму отношения: logp i − logp c = logp c * i.
Четвёртое свойство позволяет при необходимости степень выносить за знак логарифма: logk i v = n * logk i. Пятое правило гласит, что если в основании логарифма стоит степень, то её можно переместить за знак функции: logk n i = 1/ n * logk i. В отличие от четвёртого свойства показатель степени всегда выносится как обратное число.
Следующее свойство сообщает, что если основание и аргумент имеют степень, то эти показатели можно вынести за знак выражения как дробь: logk n * i m = (m/n) * logki. При этом если степени совпадают по своему значению, это правило можно записать как log k n i n = log k i. Седьмое свойство помогает решать логарифмы с разным основанием. Так, любой логарифм можно записать в виде равенства: log k i = log c i / log c k.
Эти свойства применимы к любым видам логарифмов. При этом существует ещё одно позволяющее поменять местами основание и аргумент. Для этого нужно просто единицу разделить на логарифм: log k b = 1 / log k b.
Дифференцирование и функция
Производная десятичного логарифма определяется, как отношение в числителе которого стоит единица, а в знаменателе показатель. Для доказательства этого можно рассмотреть произвольное число, которое больше единицы. Пусть имеется следующая функция: t = logc p.
Воспользовавшись свойством формулу можно упростить и записать: t’ = 1/t * logc p = (1/t) * (1/ln p) = 1 / t * ln p. То есть получить рассматриваемую функцию. Тождественным доказательством будет и метод вынесения постоянной за знак дифференцирования: (logc p)’ = (ln p / ln c)’ = ((1 / ln c ) * ln p )’ = (1/ ln c) * (1/ p) = 1 / p ln c.
Интеграл функции можно записать выражением: ∫ ln x dx = x * ln x – x + C. Находят его способом интегрирования по частям. Этим методом выражение сводится к более простому виду.
Функцию десятичного логарифма можно записать как y = lg x. График имеет вид плавной возрастающей кривой, которую ещё называют логарифмикой. К основным характеристикам функции относят:
Функция монотонная, то есть всё время она не убывает и не возрастает. Иными словами, она всегда неотрицательная или неположительная, но при этом всюду дифференцируемая. Производная для выражения находится с помощью формулы: (d/dx) lg x = lg e / x. Ось ординат обладает свойством вертикальной асимптотности, так как при лимите стремящимся к нулю логарифм по иксу будет равный минус бесконечность.
Примеры решения задач
При решении тождеств, содержащих тригонометрические функции, поможет и сборник таблиц Брадиса. Это пособие, в котором собраны ответы для чаще всего встречающихся типовых выражений.
Следующие типы примеров наиболее часто предлагаются в школе для самостоятельного решения:
Но бывает так, что самостоятельно решить задачу довольно сложно из-за громоздкости записи уравнения. При этом не так сложно провести вычисления, как правильно выбрать алгоритм решения. Поэтому в таких случаях используют так называемые онлайн-калькуляторы.
Использование онлайн-калькулятора
Использовать сервисы предлагающие услуги по вычислению десятичного логарифма, довольно удобно. Всё, что требуется от пользователя, — это интернет-канал и браузер с поддержкой флеш-технологии. Доступ к онлайн-калькуляторам предоставляется бесплатно, при этом даже нет необходимости в регистрации или указании каких-либо данных.
Онлайн-расчётчики позволяют не только получить быстрый и правильный ответ вычисления выражения любой сложности, но и предоставляют подробное решение с пояснениями. Кроме того, на страницах таких сервисов содержится краткая теория с примерами. Так что проблем с понятием, откуда взялся ответ возникнуть не должно.
Программы, используемые для расчётов, написаны на Java и включают в свой алгоритм все необходимые формулы. Пользователь, загрузив сервис должен ввести условие задачи в специально предложенную формулу и нажать кнопку «Решение» или «Вычислить». После чего буквально через две три секунды появится ответ с поэтапным решением.
Такие сервисы будут полезны не только учащимся для проверки своих знаний, но и даже инженерам, проводящим сложные вычисления. Ведь самостоятельный расчёт требует повышенного внимания и скрупулёзности. При этом любая незначительная ошибка приведёт к неправильному ответу. В то же время появление ошибки при вычислении на онлайн-калькуляторе практически невозможно.
По мнению пользователей, из нескольких десятков существующих сайтов можно выделить тройку лидеров:
Приведённые онлайн-калькуляторы для десятичного логарифма имеют интуитивно понятный интерфейс. Используемые программы написаны российскими программистами и не содержат рекламного и вредоносного кода. Решив несколько задач с помощью этих порталов, пользователь научится самостоятельно вычислять любые логарифмические уравнения. То есть калькуляторы смогут не только подтянуть знания на нужный уровень, но и даже заменить репетитора по математике.
11.4.3. Десятичный логарифм
Логарифм по основанию 10 называют десятичным логарифмом и при написании опускают основание 10 и букву «о» в написании слова «log».
lg7=log107, lg7 – десятичный логарифм числа 7.
Примеры. Вычислить:
lg10; lg100; lg1000; lg0,1; lg0,01; lg0,001.
1) lg10=1, так как 10 1 =10.
2) lg100=2, так как10 2 =100.
3) lg1000=3, так как 10 3 =1000.
Найти значение выражения:
(см. предыдущий урок 11.4.2. «Примеры на основное логарифмическое тождество» здесь)
1) 10 lg 8 =8
2) 10 lg4 +10 lg3,5 =4+3,5=7,5.
3) 10 5lg2 =(10 lg2 ) 5 =2 5 =32.
4) 100 lg3 =(10 2 ) lg3 =(10 lg3 ) 2 =3 2 =9.
5) 10 lg5+2 =10 lg5 ∙10 2 =5∙100=500.
6) 10 lg60-1 =10 lg60 :10 1 =60:10=6.
Решить уравнение.
Упростим правую часть равенства как в предыдущих примерах.
lgx=10 lg30 :10 1 ;
lgx=30:10;
2) lg (x+3)=2.
3) lg (x+5)=-1.







