Как решать балочные системы
Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления
Иметь представление о видах опор и возникающих реакциях в опорах.
Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.
Уметь выполнять проверку правильности решения.
Виды нагрузок и разновидности опор
Виды нагрузок
По способу приложения нагрузки делятся на
Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосредоточенной.
Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.
В задачах статики для абсолютно твердых тел распределенную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).
q — интенсивность нагрузки; I — длина стержня;
G = ql — равнодействующая распределенной нагрузки.
Разновидности опор балочных систем (см. лекцию 1)
Балка — конструктивная деталь в виде прямого бруса, закрепленная на опорах и изгибаемая приложенными к ней силами.
Высота сечения балки незначительна по сравнению с длиной.
Жесткая заделка (защемление) (рис. 6.2)
Опора не допускает перемещений и поворотов. Заделку заменяют двумя составляющими силы Rax и и парой с моментом Mr.
Для определения этих неизвестных удобно использовать систему уравнений в виде
Каждое уравнение имеет одну неизвестную величину и решается без подстановок.
Для контроля правильности решений используют дополнительное уравнение моментов относительно любой точки на балке, например
Шарнирно-подвижная опора (рис. 6.3)
Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.
Шарнирно-неподвижная опора (рис. 6.4)
Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.
Балка на двух шарнирных опорах (рис. 6.5)
|
Не известны три силы, две из них — вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:
Составляются уравнения моментов относительно точек крепления балки. Поскольку момент силы, проходящей через точку крепления, равен 0, в уравнении останется одна неизвестная сила.
Для контроля правильности решения используется дополнительное уравнение
При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):
Примеры решения задач
Пример 1. Одноопорная (защемленная) балка нагружена сосредоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.
|
Решение
2. В заделке может возникнуть реакция, представляемая двум: составляющими (RAy,RAx), и реактивный момент МA. Наносим на схему балки возможные направления реакций.
Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.
В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.
3. Используем систему уравнений:
Знаки полученных реакций (+), следовательно, направления реакций выбраны верно.
3. Для проверки правильности решения составляем уравнение моментов относительно точки В.
Подставляем значения полученных реакций:
Решение выполнено верно.
Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.
|
Решение
1. Левая опора (точка А) — подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.
Правая опора (точка В) — неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.
2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецелесообразно.
3. Заменяем распределенную нагрузку сосредоточенной:
G = ql; G = 2*6 = 12 кН.
Сосредоточенную силу помещаем в середине пролета, далее задача решается с сосредоточенными силами (рис. 6.8, б).
4. Наносим возможные реакции в опорах (направление произвольное).
5. Для решения выбираем уравнение равновесия в виде
6. Составляем уравнения моментов относительно точек крепления:
Реакция отрицательная, следовательно, RАy нужно направить н противоположную сторону.
7. Используя уравнение проекций, получим:
RBx — горизонтальная реакция в опоре В.
Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.
8. Проверка правильности решения. Для этого используем четвертое уравнение равновесия
Подставим полученные значения реакций. Если условие выполнено, решение верно:
Пример 3. Определить опорные реакции балки, показанной на рис. 1.17, а.
Решение
Рассмотрим равновесие балки АВ. Отбросим опорное закрепление (заделку) и заменим его действие реакциями НА,VA и тА (рис. 1.17, б). Получили плоскую систему произвольно расположенных сил.
Выбираем систему координат (рис. 1.17,6) и составляем уравнения равновесия:
Составим проверочное уравнение
следовательно, реакции определены верно.
Пример 4. Для заданной балки (рис. 1.18, а) определить опорные реакции.
Решение
Рассматриваем равновесие балки АВ. Отбрасываем опорные закрепления и заменяем их действие реакциями (рис. 1.18,6). Получили плоскую систему произвольно расположенных сил.
Выбираем систему координат (см. рис. 1.18,6) и составляем уравнения равновесия:
равнодействующая равномерно распределенной нагрузки интенсивностью q1,
расстояние от точки А до линии действия равнодействующей q1(а + b);
равнодействующая равномерно распределенной нагрузки интенсивностью q2;
расстояние от точки А до линии действия равнодействующей q2 (d — с).
Подставив числовые значения, получим
— расстояние от точки В до линии действия равнодействующей q1 (a+b);
— расстояние от точки В до линии действия равнодействующей q2(d — c).
Подставив числовые значения, получим:
Составляем проверочное уравнение:
следовательно, опорные реакции определены верно.
Пример 5. Для заданной стержневой системы (рис. 1.19, а) определить усилия в стержнях.
Решение
Рассмотрим равновесие балки AB, к которой приложены как заданные, так и искомые силы.
На балку действуют равномерно распределенная нагрузка интенсивностью q, сила Р и сосредоточенный момент т.
Освободим балку от связей и заменим их действие реакциями (рис. 1.19, б). Получили плоскую систему произвольно расположенных сил.
Выбираем систему координат (см. рис. 1.19, б) и составляем уравнения равновесия:
где q (a + b) — равнодействующая
равномерно распределенной нагрузки интенсивностью q (на чертеже она показана штриховой линией).
Подставив числовые значения, получим:
Напомним, что сумма проекций сил, образующих пару, на любую ось равна нулю;
где NBD cos α — вертикальная составляющая силы NBD‘, NBFcos β — вертикальная составляющая силы NBF(линии действия горизонтальных составляющих сил NBDи NBF проходят через точку А и поэтому их моменты относительно точки А равны нулю). Подставляя числовые значения и учитывая, что NBD= 1,41 NBF, получаем:
Тогда NBD = 1,41*33,1 = 46,7 кН.
Для определения усилий в стержнях не было использовано уравнение равновесия: ΣPto= 0. Если усилия в стержнях определены верно, то сумма проекций на ось v всех сил, действующих на балку, должна быть равна нулю. Проектируя все силы на ось v, получаем:
следовательно, усилия в стержнях определены верно.
Пример 6. Для заданной плоской рамы (рис. 1.20, а) определить опорные реакции
Решение
Освобождаем раму от связей и заменяем их действие реакциями NА, VA, VB (рис. 1.20, б). Получили плоскую систему произвольно расположенных сил.
Выбираем систему координат (см. рис. 1.20, б) и составляем уравнения равновесия:
где Р2 cos α — вертикальная составляющая силы Р2;
P2 sin α — горизонтальная составляющая силы Р2;
2qa — равнодействующая равномерно распределенной нагрузки интенсивностью q (показана штриховой линией);
линия действия силы Р2 cosα проходит через точку В и поэтому ее момент относительно точки В равен нулю
Для определения реакций не было использовано уравнение равновесия ΣPiv=0. Если реакции определены верно, то сумма проекций на ось v всех сил, действующих на раму, должна быть равна нулю. Проектируя все силы на ось v, получаем:
следовательно, опорные реакции определены верно.
Напомним, что сумма проекций сил, составляющих пару с моментом т, на любую ось равна нулю.
Контрольные вопросы и задания
1. Замените распределенную нагрузку сосредоточенной и определите расстояние от точки приложения равнодействующей до опоры А (рис. 6.9).
2. Рассчитайте величину суммарного момента сил системы относительно точки А (рис. 6.10).
3. Какую из форм уравнений равновесия целесообразно использовать при определении реакций в заделке?
4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?
|
5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).
6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.
Электронное пособие по теме Балочные системы. Определение реакций опор.
Описание презентации по отдельным слайдам:
Тема 1.4.1. Балочные системы. Определение реакций опор. Иметь представление: Знать: Уметь: О видах опор и возникающих реакциях в опорах. Три формы уравнений равновесия. Использовать три формы уравнений равновесия для определения реакций в опорах балочных систем, выполнять проверку правильности решения.
Виды нагрузок Сосредоточенная сила Равномерно-распределенная нагрузка Пара сил (момент) α q F F F1 F2 Если передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосредоточенной. Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают равномерно-распределенной.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс профессиональной переподготовки
Физика: теория и методика преподавания в образовательной организации
Курс повышения квалификации
Современные педтехнологии в деятельности учителя
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-604775
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Дума приняла закон о бесплатном проживании одаренных детей в интернатах при вузах
Время чтения: 1 минута
ЕГЭ в 2022 году пройдет в доковидном формате
Время чтения: 1 минута
Костромская область разработала программу привлечения педагогических кадров
Время чтения: 2 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Балочные системы. Классификация нагрузок и опор
Балка — конструктивная деталь в виде прямого бруса, закрепленная на опорах и изгибаемая приложенными к ней силами. Высота сечения балки незначительна по сравнению с длиной.
Виды нагрузок на балку:
|
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке) (рис. 36 сила F и F1), нагрузку называют сосредоточенной.
Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной (рис. 36 нагрузка q).
Взадачах статики для абсолютно твердых тел распределенную нагрузку можно заменить равнодействующей сосредоточенной силой (рис 37), равной по величине произведению распределенной нагрузке на длину нагруженного участка и приложенную посередине нагруженного участка.
На балку также может действовать пара сил (рис.36 изгибающий момент M).
Для передачи нагрузок балка должна быть зафиксирована относительно корпуса (фундамента, плиты и пр.). Фиксирование осуществляют с помощью опор — устройств (элементов конструкций), воспринимающих внешние силы. Конструкции опор разнообразны. Различают три основных типа опор.
Шарнирно-подвижная опора – опора, которая допускает поворот сечения балки над опорой и поступательное перемещение вдоль опорной поверхности. Схематическое изображение такой опоры показано на рис. рис. 38, опорная реакция в этом случае направлена перпендикулярно, плоскости опирания катков.
Шарнирно-неподвижная опора – опора, допускающая только угловое смещение (поворот вокруг собственной оси) и не воспринимающая моментной нагрузки. Схематическое изображение опоры показано на рис. 39; реакция такой опоры разлагается на две взаимно ортогональные составляющие.
Жесткая заделка (защемление) – опора, исключающая осевые и угловые смещения балки и воспринимающая осевые силы и моментную нагрузку. Схематическое изображение опоры показано на рис. 40. Реакция такой опоры имеет три составляющие – вертикальную, горизонтальную и реактивный момент.
Балки, имеющие две опоры, называют однопролетными, двухопорными или простыми. Балку, защемленную одним концом и не имеющую других опор, называют консольной балкой (консолью). Консолями называют также свешивающиеся за опоры части балки.
Под действием внешних нагрузок в местах закрепления стержня возникают опорные реакции. Так как деформации, изучаемые в сопротивлении материалов, малы по сравнению с размерами элементов конструкций, то при определении опорных реакций этими деформациями пренебрегают. Опорные реакции находят из уравнений статики. Балка будет находиться в равновесии, если суммы проекций на оси х и у (ось у перпендикулярна оси стержня) всех сил, приложенных к балке и сил реакций опор равны нулю, а также равна нулю сумма моментов всех сил относительно любой точки плоскости балки.
Пусть на балку (рис. 41), лежащую на опорах А и В действует вертикальная сосредоточенная сила F, распределенная нагрузка q, и момент M. На рисунке 42 приведены реакции опор системы, которые необходимо определить.
Составим уравнения равновесия.
, RA-F –q*a+RB = 0; (1)
,
(2)
,
(3)
Из уравнений (2) и (3) найдем силы реакций опор RA и RB. При подстановке значений RA и RB в выражение (1) данное равенство должно выполняться.
Пример решения задачи
Дана двухопорная балка (рис. 43), на которую действуют сила F = 50 кН, момент
М = 25 кНм, распределенная нагрузка q = 10кН/м, расстояние между опорами a= 6м, b= 5 м, с= 4м, l = 20 м.
Определить реакции опор в точках А и В.
Составим уравнения равновесия с учетом реакций опор:
,
(2)
,
(3)
Из уравнения 2 определим RB:
Из уравнения 3 определим RA :