Как решается кубический корень
Простые и не очень способы того, как вычислить кубический корень
Сколько гневных слов произнесено в его адрес? Порой кажется, что кубический корень невероятно сильно отличается от квадратного. На самом деле разница не настолько велика. Особенно, если понять, что они только частные случаи общего корня n-ой степени.
Зато с его извлечением могут возникнуть проблемы. Но чаще всего они связаны с громоздкостью вычислений.
Что нужно знать о корне произвольной степени?
Во-первых, определение этого понятия. Корнем n-ой степени из некоторого «а» называется такое число, которое при возведении в степень n дает исходное «а».
Причем бывают четные и нечетные степени у корней. Если n — четное, то подкоренное выражение может быть только нулем или положительным числом. В противном случае вещественного ответа не будет.
Когда же степень нечетная, то существует решение при любом значении «а». Оно вполне может быть и отрицательным.
Во-вторых, функцию корня всегда можно записать, как степень, показателем которой является дробь. Иногда это бывает очень удобным.
Например, «а» в степени 1/n как раз и будет корнем n-ой степени из «а». В этом случае основание степени всегда больше нуля.
Аналогично «а» в степени n/m будет представлено, как корень m-ой степени из «а n ».
В-третьих, для них справедливы все действия со степенями.
В чем сходства и различия квадратного и кубического корней?
Они похожи, как родные братья, только степень у них разная. И принцип их вычисления одинаков, различие только в том, сколько раз должно число на себя умножиться, чтобы получить подкоренное выражение.
А о существенном отличии было сказано чуть выше. Но повториться не будет лишним. Квадратный извлекается только из неотрицательного числа. В то время, как вычислить кубический корень из отрицательной величины не составит труда.
Извлечение кубического корня на калькуляторе
Каждый человек хоть раз делал это для квадратного корня. А как быть если степень «3»?
На обычном калькуляторе имеется только кнопочка для квадратного, а кубического — нет. Здесь поможет простой перебор чисел, которые трижды умножаются на себя. Получилось подкоренное выражение? Значит, это ответ. Не получилось? Подбирать снова.
А что в инженерном виде калькулятора в компьютере? Ура, здесь есть кубический корень. Эту кнопочку можно просто нажать, и программа выдаст ответ. Но это не все. Здесь можно вычислить корень не только 2 и 3 степени, но и любой произвольной. Потому что есть кнопка у которой в степени корня стоит «у». То есть после нажатия этой клавиши потребуется ввести еще одно число, которое будет равно степени корня, а уже потом «=».
Извлечение кубического корня вручную
Этот способ потребуется, когда калькулятора под рукой нет или воспользоваться им нельзя. Тогда для того чтобы вычислить кубический корень из числа, потребуется приложить усилия.
Сначала посмотреть, а не получается ли полный куб от какого-нибудь целого значения. Может быть под корнем стоит 2, 3, 5 или 10 в третьей степени?
В противном случае нужно будет считать столбиком. Алгоритм не самый простой. Но если немного попрактиковаться, то действия легко запомнятся. И вычислить кубический корень больше не будет проблемой.
Наглядный пример вычисления кубического корня
Он нужен потому, что описание может показаться сложным. На рисунке ниже показано, как извлечь кубический корень из 15 с точностью до сотых.
Единственной сложностью, которую имеет этот метод, заключается в том, что с каждым шагом числа увеличиваются многократно и считать в столбик становится все сложнее.
Корни и степени
Здесь — основание степени, — показатель степени.
Степень с натуральным показателем
Проще всего определяется степень с натуральным (то есть целым положительным) показателем.
Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.
Возвести число в куб — значит умножить его само на себя три раза.
Возвести число в натуральную степень — значит умножить его само на себя раз:
Степень с целым показателем
Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.
Определим также, что такое степень с целым отрицательным показателем.
Заметим, что при возведении в минус первую степень дробь переворачивается.
Свойства арифметического квадратного корня:
Кубический корень
Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.
Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.
Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.
Сразу договоримся, что основание степени больше 0.
При этом также выполняется условие, что больше 0.
Запомним правила действий со степенями:
— при перемножении степеней показатели складываются
— при делении степени на степень показатели вычитаются
— при возведении степени в степень показатели перемножаются
Ты нашел то, что искал? Поделись с друзьями!
Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:
Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.
Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
Это полезно
В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.
Извлечение кубического корня в уме
Мы продолжаем (см. [1]) знакомить читателей с приемами, позволяющими проводить в уме достаточно сложные вычисления.
Для этого прежде всего нужно выучить кубы чисел от 1 до 10:
При изучении этой таблицы обнаруживается, что все цифры, на которые оканчиваются кубы, различны, причем во всех случаях, за исключением 2 и 3, а также 7 и 8, последняя цифра куба совпадает с числом, возводимым в куб. В исключительных же случаях (для чисел 2, 3, 7 и 8) последняя цифра куба равна разности между 10 и числом, возводимым в куб.
Эти обстоятельства и используются для быстрого извлечения кубического корня. Пусть зритель получил, например, 250?047. Последняя цифра этого числа 7, из чего немедленно следует, что последней цифрой кубического корня должна быть 3. Первую цифру кубического корня находим следующим образом. Зачеркнем последние три цифры куба (независимо от количества его цифр) и рассмотрим цифры, стоящие впереди,?— в нашем случае это 250. Число 250 располагается в таблице кубов между кубами шестерки и семерки. Меньшая из этих цифр?— в нашем случае 6?— и будет первой цифрой кубического корня. Поэтому правильным ответом будет 63.
Чтобы лучше уяснить суть дела, приведем еще один пример. Пусть названо число 19?683. Его последняя цифра 3 указывает, что последней цифрой кубического корня будет 7. Зачеркивая последние три цифры, получаем число 19, которое лежит между кубом двойки и кубом тройки. Меньшим из этих чисел будет 2, поэтому искомым кубическим корнем будет 27.
Применяя описанные правила нахождения цифр кубического корня, можно быстро определить, что, например,
В заключение заметим, что, как, очевидно, вы уже поняли, описанная методика применима только к случаям, когда искомый корень — целое число или, иначе, когда заданное число есть, как говорят, “точный куб”.
Задание для самостоятельной работы
Определите (в уме!) значения кубического корня из следующих чисел:
343, 512, 4096, 8000, 15?625, 39?304, 132?651, 551?368.
Постарайтесь получить решения, не смотря на приведенную в статье таблицу, а выучив ее.
1. Возведение двузначных чисел в квадрат. / “В мир информатики” № 50 (“Информатика” № 3/2005).
7 Наверняка аналогичными приемами пользовался Роман Семенович Арраго, которому посвящена статья в данном выпуске.
Кубический корень
Содержание
Свойства
Кубический корень — нечётная функция. В отличие от квадратного корня, кубический может быть извлечён и из отрицательных чисел:
Общее правило — из отрицательных чисел корни нечётной степени (в том числе и кубический) извлекаются, корни чётной степени — нет. Данное утверждение справедливо только для диапазона вещественных чисел.
Кубический корень из комплексного числа (из любого числа) имеет ровно три значения (частный случай свойства корня n-ой степени):
Здесь под понимается арифметический корень из положительного числа
Два комплексных значения кубического корня получаются из вещественных по формуле:
Эти значения необходимо знать для решения кубических уравнений по формуле Кардано.
Интересные факты
Кубический корень не может быть извлечён с помощью циркуля и линейки. Именно поэтому неразрешимы сводимые к извлечению кубического корня классические задачи: удвоение куба, трисекция угла, а также построение правильного семиугольника.
При постоянной плотности вещества размеры двух подобных тел относятся друг к другу как кубические корни их масс. Так, если один арбуз весит вдвое больше, чем другой, то его диаметр (а также окружность) будет всего лишь чуть больше, чем на четверть (на 26%) больше, чем у первого; и на глаз будет казаться, что разница в весе не столь существенна. Поэтому при отсутствии весов (продажа на глазок) обычно более выгодно покупать бо́льший плод.
См. также
Литература
Полезное
Смотреть что такое «Кубический корень» в других словарях:
кубический корень — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN third root … Справочник технического переводчика
КУБИЧЕСКИЙ — (от слова куб). 1) имеющий вид куба. 2) мера, имеющая форму куба, т. е. правильного шестигранника. 3) корень, всякая величина, которая, будучи помножена три раза сама на себя, дает данную величину. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка
КОРЕНЬ КУБИЧЕСКИЙ — (обозначение 3Ц), число, которое необходимо дважды умножить на само себя для получения заданного числа. Например, кубический корень из 64 равняется 4, поскольку 4x4x4 = 64. В этом случае записывают: 3Ц64 = 4. В терминах алгебры кубический корень… … Научно-технический энциклопедический словарь
кубический — КУБИЧЕСКИЙ, КУБИЧНЫЙ ая, ое. cubique adj. <, лат. cubicus. 1. Имеющий форму куба. шестигранника. Сл. 18. Большая голова кубической фигуры. С. Меран 20. Горница имела совершенно кубический вид. ТВЭО 50 14. 2. Связанный с объемом, измерением… … Исторический словарь галлицизмов русского языка
КОРЕНЬ — КОРЕНЬ, корня, мн. корни, корней, м. 1. Вросшая в землю часть растения, через к рую оно всасывает соки из почвы. Бурей выворотило деревья с корнями. Дуб глубоко пустил корни в землю. || Древесина или вещество этой части растения. Лакричный корень … Толковый словарь Ушакова
КУБИЧЕСКИЙ — КУБИЧЕСКИЙ, кубическая, кубическое. 1. прил. к куб1 в 1 и 4 знач. (мат.). Кубическая форма. Кубическая степень. Извлечь кубический корень. 2. Выраженный в мерах, за единицу объема которых принят куб. Кубическая система мер. Кубический метр.… … Толковый словарь Ушакова
КОРЕНЬ ЧИСЛА — (root of number) Число х, чье значение в степени r равно у. Если у=хr, то х – корень r – степени от у. Например, в уравнении у=х2, х является квадратным корнем из у, и записывается следующим образом: x=√ y=y1/2; если z=x3, то х – кубический… … Экономический словарь
Корень (значения) — Корень: В Викисловаре есть статья «корень» Корень (в ботанике) вегетативный осевой подземный орган растения, обладающий сп … Википедия
корень — сущ., м., употр. сравн. часто Морфология: (нет) чего? корня, чему? корню, (вижу) что? корень, чем? корнем, о чём? о корне и на корню; мн. что? корни, (нет) чего? корней, чему? корням, (вижу) что? корни, чем? корнями, о чём? о корнях 1. Корень это … Толковый словарь Дмитриева
Кубический закон взаимности — Характер кубического вычета – теоретико числовая функция двух аргументов, являющаяся частным случаем символа степенного вычета. Также является характером в простом поле. Характер кубического вычета является аналогом символа Лежандра, и для его… … Википедия