грозоразрядник для чего нужен
Для чего нужны Грозоразрядники?
Как известно, молнии всегда бьют в металлические предметы, которые находятся выше всего над землёй. Если мы с вами ставим антенну на крышу дома или коттеджа, то получается что антенна и будит тем самым предметом, куда ударит разряд молнии.
Грозоразрядники (грозозащита) используются в антенно-фидерных трактах для защиты оборудования от поражения разрядом молнии во время грозы. Обычно эти элементы устанавливаются в разрыв высокочастотного кабеля и заземляются. Грозоразрядник уводит ток молний в землю, защищая, таким образом, все оборудование от замыканий и полного поражения.
Как правило, предохранителем у грозоразрядника является специальная сменная плавкая вставка, которую можно заменить в случае разряда молнии.
Кроме того, грозоразрядник предохраняет оператора от поражения электрическим током во время грозы, в случае попадания молнии в антенну.
При приближении грозы находясь в жилом доме СЛЕДУЕТ:
— отключить все приемники электрической энергии от сети;
— отсоединить радиостанцию от наружной антенны;
— закрыть все окна и двери.
Мы настоятельно рекомендуем использовать грозозащиту при монтаже базовых антенн, особенно при отсутствии вокруг молниеотводов.
Внимание. Установка грозоразрядника сэкономит значительные средства на сервисном обслуживании оборудования и систем радиосвязи.
Следите за новостями в нашей группе Вконтакте
Хочешь всегда знать обо всех акциях компании?
Простая грозозащита
В последние годы актуальность грозозащит стала поменьше — оптика, беспроводные технологии, но все же все же. Если к вам в квартиру заходит кабель, и этот кабель — не оптический, гроза представляет угрозу для вашего оборудования. Если у вас есть телевизор и он подключен к общей сети — кабельное ТВ, коллективная антенна (вдруг) — к чему угодно, что находится за пределами квартиры, гроза представляет угрозу для телевизора, (причем даже бОльшую, чем для компьютера).
Если вкратце, есть два объекта — облако и земля. Облако в процессе движения «трется» о другие облака и об потоки воздуха, при этом оно обменивается зарядами с тем, обо что трется — электризуется.
Точно так же электризуется синтетический свитер, если его снимать через голову, искры, которые при этом трещат — самые настоящие молнии, той же природы, только маленькие.
Итак, облако набрало заряд, и его потенциал составляет несколько миллионов вольт. Тут есть нюанс: потенциал не существует сам по себе и измеряется относительно какого-то другого объекта, в данном случае земли.
Что такое земля с точки зрения электротехники? Это огромный проводник, фактически сферический конденсатор огромной емкости, который может в неограниченных количествах принимать и отдавать заряды.
При этом за счет своих габаритов и емкости сколько ни закачай заряда в землю, сколько ни забери заряда из земли, ее потенциал практически не изменится.
Именно поэтому потенциал земли считается равным нулю, и от него отсчитывают другие потенциалы.
В пространстве под облаком образуется такое себе распределение потенциалов:
На любых проводах, находящихся на открытом пространстве под грозовым облаком, наводятся потенциалы в несколько тысяч Вольт и более. Несмотря на ужасающие цифры, опасности эта ситуация не влечет:
Напряжение большое, но энергия, которую можно извлечь, определяется емкостью проводов относительно земли, а она мизерна.
Ситуция в корне меняется, если облако «замыкает» на землю, то бишь образуется молния. При этом происходит два явления, которые несут большую угрозу для оборудования.
Явление 1: излучение мощной электромагнитной волны.
Откуда берется волна? Молния — это фактически проводник, «столб» с током, причем этот ток резко меняется во времени. Любое изменение тока порождает электромагнитные волны, и молния тоже. Ток в молнии огромный, до сотен тысяч ампер, и электромагнитная волна получается очень мощной.
В «электро»-«магнитной» волне есть электрическое и магнитное поле (КО).
Куда они направлены? Электрическое поле — а именно оно нас интересует — направлено параллельно молнии.
В электрическом поле между любыми двумя точками существует разность потенциалов — напряжение, и это напряжение тем больше, чем больше расстояние между точками (ну и само собой тем больше, чем больше само поле).
Выражаясь по-русски, поле электромагнитной волны молнии наводит напряжения (нескольких видов) во всех железяках, которые встречаются на пути волны.
Какие именно напряжения?
Напряжение между проводами («противофазное»)
Как хорошо видно из рисунка, электрическое поле волны наводит в параллельных проводах напряжение, и это напряжение тем больше, чем больше расстояние между проводами.
Такое напряжение наводится во всех проводах, которые параллельны: воздушные линии электропередачи, телефонная лапша etc. Такое напряжение может попасть, например, в электросеть и вызвать кратковременный всплеск напряжения 220Вольт, или вывести из строя ADSL-модем (если по какой-то причине провод до модема идет по улице).
Однако в бытовых условиях это напряжение не очень велико за счет небольшого расстояния между проводами.
Именно для компенсации этого напряжения провода в витой паре свиты, и в магистральных телефонных кабелях — тоже. Как видно из рисунка, напряжения соседних «завивок» уничтожают друг друга, давая в сумме ноль (в идеале конечно, в реальности за счет многих факторов напряжение на витой паре при ударе молнии все же есть).
ак выглядит такое напряжение с точки зрения компьютера? Так, как будто ему в разъем сетевой карты резко воткнули вместо небольшого (менее 1 Вольт) сигнала несущей Ethernet источник со значительно бОльшим напряжением.
Итак, угроза номер 1: противофазные напряжения в линии связи при ударе молнии.
Напряжение на обоих проводах относительно земли («синфазное»)
Повторимся: напряжение между проводниками в поле волны тем больше, чем больше расстояние между проводниками. Но помимо проводов в линии связи, есть еще два проводника: сама линия связи и земля. Расстояние между ними много больше, чем расстояние между проводами в кабеле, значит, и напряжение между линией и землей тоже намного больше.
Как выглядит такое напряжение с точки зрения компьютера? Так, как будто соединили все провода в линии связи и подключили, допустим, к «+» источника напряжения. «-» этого источника подключен к земле.
«Да, но ведь наш компьютер не подключен к заземлению, и потенциал на линии относительно земли нам не страшен» — скажете вы, и представите вот такую картинку:
А откуда такой оптимизм, что компьютер не подключен к земле? «Подключен к земле» не означает, что из компьютера выходит толстая шина заземления, это означает, что между землей и компьютером есть какая-то электрическая цепь.
Есть ли такая цепь? Зачастую да.
В БП обычного системного блока никаких деталей между общим проводом компьютера (черный который) и «горячей» частью БП (которая в розетку включается) никаких деталей нет.
А в некоторых блоках питания мониторов и ноутбуков между землей компьютера и землей горячей части БП установлен конденсатор, назначение — подавление импульсных помех. Фактически через этот конденсатор ваш компьютер имеет прекрасное заземление для импульсных напряжений, в том числе и возникающих при ударе молнии.
«Стоп», опять скажете вы. «Блок питания разве заземлен?»
Да, поскольку в розетке есть ноль и фаза. Ноль бытовой сети 220 Вольт подключен к заземлению в обязательном порядке.
А достаточно ли емкости этого конденсатора, чтобы представлять угрозу? Да. Обычно это несколько тысяч пикофарад, и если зарядить этот конденсатор до напряжения в несколько киловольт, его энергии вполне хватит для вывода схемы компьютера из строя.
Есть и другие варианты цепей, через которые компьютер может быть подключен к земле.
Фактически упрощенная схема цепи выглядит так
Итак, угроза номер 2: синфазные напряжения в линии.
Явление 2. Растекание тока от молнии и связанное с этим изменение потенциала земли
Об угрозах номер 1 и 2 многократно писали. Но есть и еще одна угроза, которую обычно обходят вниманием, правда, она актуальна в том случае, если компьютер по-настоящему заземлен (ТВ-тюнер, антенна — см. выше) и особенно актуальна для телевизоров (немного ниже о ТВ отдельно).
Что такое «земля»? Третья планета Повторимся: главное электротехническое свойство земли — это способность неограниченно принимать заряды.
А что еще может принимать заряды? Любая железяка, любой проводник, любой кусок электрической схемы, выступая просто как проводник. Такая «псевдоземля», конечно, принимает намного меньше зарядов, просто в силу габаритов, емкости если хотите, но все же принимает.
Итак, ударила молния. В молнии протекает ток, переносятся заряды, всякие там электроны.
А куда они переносятся? В землю, куда ударила молния.
В земле протекает ток, «растекаясь» вокруг места удара молнии. Потенциал земли вокруг места удара перестает быть нулевым, и если где-то рядом с ударом молнии находится ваше заземление, то его потенциал в момент удара резко возрастает, и через заземление в ваш компьютер или телевизор «затекают» из земли заряды от молнии.
А куда они дальше деваются? Для этих зарядов роль «земли» выполняет схема компьютера или телевизора, заряды растекаются в схеме, и через электронные узлы схемы протекают токи, которые могут привести к выходу этих узлов из строя.
Итак, при ударе молнии на компьютер/телевизор действуют сразу четыре поражающих фактора (оценка опасности субъективна и основана на ремонтном опыте):
Защита
Абстракция: защититься от потока можно двумя способами: закрыть поток или отвести его в другое русло.
Отвод потока энергии
Самый простой принцип грозозащиты: замкнуть или сбросить в землю лишнюю энергию, актуально для синфазных и противофазных напряжений.
Условная схема проста:
При превышении напряжения («провод-провод» или «провод-земля») пороговый элемент открывается и замыкает цепь.
Один из лучших вариантов пороговых элементов — газоразрядные приборы, самый простой вариант — обычная неонка.
Неонка — не лучший разрядник для таких целей: высокое внутреннее сопротивление, малая мощность рассеивания, да и вообще она не для этого.
Есть специализированные разрядники именно для защиты линий:
и грозозащита с таким разрядником
Варианты схем таких грозозащит в основном сводятся к тому, как посадить один дорогой разрядник на несколько линий и как еще добавить дополнительных защитных элементов (варисторы, искровые промежутки).
В интернете есть масса и устройств в продаже, и схем для самореализации.
Есть ли смысл применять такие защиты? Конечно есть, и была масса ситуаций, когда они выручали. Цена вопроса — несколько долларов.
Но обратим внимание вот на что:
1. Все защиты не касаются телевизоров и вообще заземленной техники (см. выше).
2. Все такие защиты оперируют с полной мощностью напряжений, наводимых в линии молнией, сбрасывая/замыкая часть ее.
Есть способ уменьшить мощность напряжений, наводимых в линии молнией.
Гальваническая развязка
В электротехнике и радиотехнике есть понятие «гальваническая развязка» — когда то, что нужно, передается, при этом электрической связи между передающей и принимающей частью нет.
Самый простой пример — трансформатор. Как он работает? Одна обмотка перемагничивает магнитопровод, за счет этого перемагничивания возникает напряжение во второй обмотке, вот как-то так:
Главное, что нас интересует в этом девайсе:
— первичная и вторичная обмотки между собой не соединены. Никак. Синфазные напряжения в принципе через трансформатор не пройдут
— вы можете подключить первичную обмотку хоть к мегаваттной электростанции — во вторичной обмотке вы не получите мощность больше, чем может пропустить через себя сердечник.
Если мы установим по трансформатору на все входящие пары ethernet, а в телевизоре — на вход антенны, то мы решим массу проблем.
Во-первых, мы железно развяжемся от земли и устраним самую опасную проблему — затекание токов от молнии в наш девайс.
Подчеркну — актуально главным образом для телевизоров, наблюдалось много сгоревших после грозы, причем выходили из строя не БП, а именно внутренние узлы с высокой степенью интеграции — процессоры, микросхемы обработки сигнала etc.
Во-вторых, противофазная помеха, конечно, попадет на вход устройства, но ее мощность будет ограничена трансформатором и вреда не принесет. К тому же вот теперь ее легко и надежно можно отсечь грозозащитой.
В третьих, синфазная помеха к нам не попадет вообще.
Красота? Конечно. Только не нужно забывать, что помимо защитных функций, трансформатор должен еще без проблем пропустить сигнал, и тут начинаются нюансы.
На входе сетевой карты в обязательном порядке трансформаторы стоят, вот первые попавшиеся в гугле схемы:
Но практика показывает, что в реальности толку от них немного, горят и сетевые карты, и все остальное. Возможно, это связано с особенностями конструкции, или с пробоем изоляции очень тонких эмалированных проводников, которыми они намотаны.
Изготовить самостоятельно такой же, но без крыльев но улучшенный трансформатор с магнитопроводом малореально — для частот Ethernet 100base-t и для телевизионных частот (сотни мегагерц) расчет и конструкция трансформатора сложны, плюс нужен особый высокочастотный материал магнитопровода.
Но все можно решить намного проще.
Трансформатор с деревянным сердечником
Берем кусок витой пары, полметра — метр, некритично.
Важно! Витая пара не должна быть повреждена, расплетена, нарушен шаг витков и пр. — аккуратно достаньте из кабеля, не тяните за провод!
Наматываем на любую неметаллическую оправку — можно вот так:
Если серьезно, то наматываем на что угодно непроводящее неметаллическое, но чтобы удобно было. Как наматывать, число витков и пр. — некритично.
Оставляем концы по 5 см, фиксируем намотку — опять же чем-нибудь непроводящим, расплетаем концы и переплетаем по-другому: свиваем вместе концы одного цвета.
То есть каждый провод — отдельная как бы обмотка.
Это — трансформатор, но работающий на другом принципе: трансформатор на длинной линии.
Длинная линия в данном случае — кусок витой пары. В ней при работающей сети Ethernet возбуждается электромагнитная волна, причем ее энергия сосредоточена внутри пары (именно поэтому неважно на чем наматывать). Энергия поля этой электромагнитной волны обеспечивает передачу сигнала с одного провода на другой.
Как использовать такой трансформатор для защиты от молний?
Изготовьте два таких трансформатора. Включить их нужно в разрыв двух пар любым способом — можно просто аккуратно разрезать кабель, разрезать нужные пары и включить в разрыв эти трансформаторы. Полярность — некритична.
Сразу ответ на возникшие вопросы.
Это — не шутка, конструкция проверена и используется. Я в грозу не выключаюсь вообще, проблем не было, до этого сжег пару сетевых карт и материнку.
В Интернете есть подобные варианты трансформаторов, но намотанные на ферритовом кольце.
Я — противник этого: в передаче сигнала кольцо не участвует, но феррит — проводник, плохой, но проводник. Наматывая на кольце, вносятся ненужные паразитные емкости и появляется возможность пробоя на сердечник при ударе молнии.
Но на кольце, конечно, красивее выглядит конструкция. Дело вкуса.
На гигабитной сети не проверялось.
Потерь такая конструкция не вносит при длине витой пары в трансформаторе от 0,5 метра.
Измерения прибором (ВЧ-вольтметр импровизованный) падения уровня сигнала не показывают.
Линк до 100 метров работает так же как и работал — 0% потерь, время пинга не изменилось.
В общем, с точки зрения работы сети наличие в разрывах входящего сетевого кабеля двух таких трансформаторов никак не обнаруживается.
Другие грозозащиты я не использую.
Грозозащита антенного кабеля
Здесь главная задача — отвязаться от земли, которая «приходит» по оплетке антенного кабеля. Принцип тот же: в разрыв кабеля включить такой трансформатор, но тут могут возникнуть нюансы.
Волновое сопротивление витой пары и антенного кабеля — разное, плюс к этому витая пара — симметрична, а антенный кабель — нет. Поэтому может упасть уровень приема некоторых аналоговых каналов (а может визуально и не упасть), могут появиться на некоторых — опять же аналоговых — каналах двоения. Можно поэкспериментировать с длиной куска витой пары в трансформаторе, можно попробовать изготовить аналогичную конструкцию из антенного кабеля.
Я на грозовой период к телевизору такую штуку делаю. Появляется небольшой снег на 1-м канале из 70-ти.
И в заключение важный момент.
Ничто вас не спасет от прямого попадания молнии в кабель. Более того, в такой ситуации вас будет заботить не сохранность сетевой платы, а чтобы квартира не сгорела.
Будьте благоразумны, не используйте идущие по улице и заходящие к вам в квартиру длинные медные линии связи.
Грозозащита и заземление антенн
Грозозащита — это ряд мер, направленных на защиту оборудования от выхода из строя в случае попадания молнии в антенну или на конвертер. Комплекс грозозащиты — это установка заземления на антенну и специального грозозащитного модуля на кабель.
Часто обходятся чем-то одним, но это не всегда правильно:
— Модуль грозозащиты на кабеле защитит оборудование (ресивер, телевизор), но все что находится до этого блока (сама антенна и кабель) — при прямом попадании молнии выйдет из строя.
— Установка только заземления, без грозозащитного модуля на кабеле, тоже недостаточна. Дело в том, что во время грозы разряд может попасть не в спутниковую антенну, а вблизи нее, но даже тогда возникает электромагнитный импульс, вызывающий скачок напряжения на спутниковой антенне и антенном кабеле — и в этом случае модули грозозащиты на кабеле «спасут» ресивер от этого скачка напряжения.
Заземление антенны
Когда действительно нужно заземление?
Обычно его рекомендуют делать всегда, но этот совет не совсем верен. Конечно, на всякий случай, заземлить можно любую антенну. Однако реальный риск попадания молнии есть тогда, когда в радиусе 5 метров от антенны нет предметов, которые выше нее более чем на 1 метр (дерево либо другой прибор, в т. ч. громоотвод).
В идеале, нужно заземлять не саму антенну, а устанавливать на частный дом целую систему грозозащиты с большим молниеотводом, размещая спутниковую антенну в зоне его действия. Однако в виду дороговизны такого оборудования, многие пренебрегают его установкой — в этом случае имеет смысл заземлить хотя бы антенну.
Вообще, любая молниезащита состоит из трех основных частей, которые сведены в единую электрическую цепь:
Молниеприемник
В случае, если заземляется мачта антенны, она и будет играть роль молниеприемника.
Токоотвод
Это провод, который отводит ток молнии к заземлителю. В качестве токоотвода используют цельный провод с минимальным поперечным сечением:
Выбор способа заземления антенны зависит от нескольких факторов:
Если антенна установлена на заземленной металлической кровле, то для заземления достаточно соединить металлическую мачту или отдельный молниеприемник с крышей.
Иногда антенну располагают на отдельной деревянной мачте, стоящей на земле, то в качестве токоотвода используется провод, проложенный по мачте и соединяющийся с заземлителем, вкопанным в землю.
Если антенна располагается на неметаллической кровле, то токоотвод прокладывается вдоль стены дома и заземляется аналогично предыдущему варианту.
Заземлитель
Для устройства заземления вырывается яма глубиной 2–3 м, в которую помещается заземлитель. Обычно в качестве заземлителя используют металлические листы, трубы, арматуру, толстый металлический провод и др. Лучшим заземлителем является отрезок толстостенной трубы длиной 1,5–2 м. К заземлителю должен быть приварен стальной проводник диаметром не менее 5 мм., конец которого обычно крепят к стене дома (к этому концу присоединяется провод токоотвода).
Для чего нужны Грозоразрядники?
Как известно, молнии всегда бьют в металлические предметы, которые находятся выше всего над землёй. Если мы с вами ставим антенну на крышу дома или коттеджа, то получается что антенна и будит тем самым предметом, куда ударит разряд молнии.
Грозоразрядники (грозозащита) используются в антенно-фидерных трактах для защиты оборудования от поражения разрядом молнии во время грозы. Обычно эти элементы устанавливаются в разрыв высокочастотного кабеля и заземляются. Грозоразрядник уводит ток молний в землю, защищая, таким образом, все оборудование от замыканий и полного поражения.
Как правило, предохранителем у грозоразрядника является специальная сменная плавкая вставка, которую можно заменить в случае разряда молнии.
Кроме того, грозоразрядник предохраняет оператора от поражения электрическим током во время грозы, в случае попадания молнии в антенну.
При приближении грозы находясь в жилом доме СЛЕДУЕТ:
— отключить все приемники электрической энергии от сети;
— отсоединить радиостанцию от наружной антенны;
— закрыть все окна и двери.
Мы настоятельно рекомендуем использовать грозозащиту при монтаже базовых антенн, особенно при отсутствии вокруг молниеотводов.
Внимание. Установка грозоразрядника сэкономит значительные средства на сервисном обслуживании оборудования и систем радиосвязи.
17 ноября 2011 в 14:00
Защита от перенапряжений является первоочередной задачей при подключении устройств и оборудования к энергосистемам низкого, среднего и высокого напряжения. Поскольку сегодня все чаще применяется оборудование, элементы и системы изоляции которого чувствительны к перепадам и скачкам напряжения, возрастают требования к способности ограничителей перенапряжения обеспечить надлежащую защиту от негативных последствий ударов молнии, явлений электрического переключения и т.д. Любая аппаратура, от персональных компьютеров до систем передачи и распределения энергии, подвержена разрушительному воздействию резких изменений напряжения в электросети. Данная тема очень обширна, в ней необходимо затронуть множество моментов, поэтому в одной статье можно рассмотреть только основные аспекты выбора и применения. Таким образом, эта статья будет сосредоточена на электросетях/системах с напряжением 1000В и выше, с целью предоставить читателю общие рекомендации по правильному выбору и применению молниеотводов и ограничителей перенапряжения.
Определение
Согласно NEC 2005, разрядник определен как: «Защитное устройство для ограничения перепадов напряжения за счет подавления импульсного тока, которое также предотвращает протекание сопровождающего тока, при этом сохраняя способность к повторению данных функций».
Типы/Классификация
Существует три основных типа ограничителей перенапряжения:
Выделяют четыре (4) класса разрядников:
Из трех указанных выше типов разрядников трубчатый тип больше не используется. Вентильные разрядники нелинейного резисторного типа с искровыми промежутками использовались в середине 1970-ых годов и к настоящему времени их применение также прекращено. Традиционный тип с карбидкремниевыми блоками/дисками используется до сих пор. Сегодня наиболее широко распространены металлооксидные ограничители перенапряжения без искровых промежутков. В этой статье мы не рассматриваем вспомогательный класс.
Что касается четырех классов разрядников, рассматриваемых в этой статье, разрядники станционного класса являются наилучшими, учитывая их стоимость, долговечность и качество защиты в целом. Он имеет самую низкую (наилучшую) степень защиты и энергию разряда по сравнению с более высокими (худшими) уровнями защиты у других классов. Как указано выше, распределительный класс имеет несколько степеней нагрузки.
Разрядники высокой производительности более долговечны и имеют более низкие защитные характеристики. Корпус такого разрядника может быть полимерным либо фарфоровым.
Мы сосредоточимся на металлооксидных ограничителях перенапряжения (ОПН) без искровых промежутков, поскольку они наиболее надежны и производительны. Пожалуйста, учитывайте, что разрядники с искровыми промежутками и без таковых служат для одних и тех же целей, поэтому процесс их выбора и применения аналогичен. Тем не менее, необходимость использовать более высокие уровни напряжения для вентильных разрядников и возможность контаминации искрового промежутка означает, что степень защиты и надежности будет несколько ниже. В случае отказа вентильных разрядников, читателю стоит рассмотреть возможность замены их металлооксидными ОПН без искровых промежутков.
Стандарты/Правила
Выбор и применение
Основная цель применения разрядника – выбрать устройство с самым низким порогом перенапряжения, которое бы обеспечивало надлежащую защиту изоляции оборудования и, будучи подключенным к энергосистеме, имело удовлетворительный номинальный срок службы. Стоит отдавать предпочтение разрядникам с минимальным порогом срабатывания, поскольку они обеспечивают наивысший уровень защиты изоляции оборудования. Между степенью защиты и сроком эксплуатации ограничителя перенапряжения есть тонкая грань. Высокий порог срабатывания увеличит срок службы разрядника на конкретной энергоустановке, но снизит степень защиты изоляции оборудования. Таким образом, при выборе ограничителя перенапряжения читателю необходимо принять во внимание оба момента – и срок эксплуатации разрядника, и безопасность оборудования.
Лучше всего устанавливать разрядник как можно ближе к защищаемому оборудованию, предпочтительно во вспомогательном распределительном щите. Такое требование основано на математике волновой теории, согласно которой падающая и отраженная волна направляются в узловую точку (или щитовую защищаемого оборудования). Длина проводов для заземления соединения ограничителей перенапряжения с терминалами оборудования должна быть минимальной. Провода необходимо прокладывать прямо, по возможности избегая изгибов. Этим гарантируется, что всплеск энергии уйдет в землю по самому короткому пути. Увеличение длинны провода снизит защитную способность ограничителя перенапряжения в связи с дополнительным сопротивлением в проводе.
Чтобы правильно подобрать ограничитель перенапряжения с учетом условий применения, необходимо принять во внимание следующие основные моменты:
В Таблице 1 представлены уровни срабатывания разрядников, обычно применяемые для систем с различным линейным напряжением. Мощность разрядника определяется среднеквадратичным напряжением, с которым он прошел испытание рабочего цикла, в соответствии с указаниями соответствующего стандарта.
Таблица 1 Типичные уровни срабатывания разрядников для различных напряжений сети | |||||
Уровень срабатывания разрядника (кВ) | Уровень срабатывания разрядника (кВ) | ||||
Номинальное напряжение сети (кВ) | Сеть с заземленной нейтралью | Сеть с изолированной или компенсированной нейтралью | Номинальное напряжение сети (кВ) | Сеть с заземленной нейтралью | Сеть с изолированной или компенсированной нейтралью |
2.4 | 2.7 | 3.0 | 69 | 54 | |
60 | |||||
4.16 | 3.0 | 66 | |||
4.5 | 4.5 | 72 | |||
5.1 | 115 | 90 | |||
4.8 | 4.5 | 96 | |||
5 1 | 6.0 | 108 | 120 | ||
138 | 108 | ||||
6.9 | 6.0 | 120 | |||
75 | 132 | ||||
8.5 | 144 | ||||
12.47 | 9.0 | 161 | 120 | ||
10 | 132 | ||||
12 | 144 | 144 | |||
15 | 168 | ||||
13.2, 13.8 | 10 | 230 | 172 | ||
12 | 180 | ||||
— | 15 | 192 | |||
18 | 228 | ||||
23, 24.94 | 18 | 240 | |||
21 | 345 | 258 | |||
24 | 24 | 264 | |||
27 | 276 | ||||
34.5 | 27 | 288 | 288 | ||
30 | 294 | 294 | |||
— | 36 | 300 | 300 | ||
39 | 312 | 312 | |||
46 | 39 | 400 | 300 | ||
— | 48 | 312 | |||
336 | |||||
360 |
Постоянное напряжение сети
Когда ограничители перенапряжения подключены к энергосистеме, они находятся под постоянным воздействием рабочего напряжения. В зависимости от характеристик разрядника, существуют разные пределы уровня постоянного напряжения. Это называется максимальное длительное рабочее напряжение (MCOV) разрядника. Необходимо выбирать ограничитель перенапряжения с такими характеристиками, чтобы максимальное длительно напряжение в энергосистеме, где будет установлено устройство, равнялось или было ниже MCOV разрядника. Следует учитывать как конфигурацию электросети (звезда или треугольник), так и тип подключения разрядника (линейное или фазное). В большинстве случаев ограничители перенапряжения имеют соединение «фаза-земля». Если же устройство имеет линейное подключение, стоит обратить внимание на межфазное напряжение. В дополнение к этому, для определения оптимальных параметров разрядника необходимо принимать в расчет также и конфигурацию заземления системы – глухое заземление или эффективное заземление (резистивное заземление, временное заземление, отсутствие заземления). Это ключевой фактор при выборе и применении ограничителя перенапряжения. Если конфигурация заземления системы неизвестна, читатель должен предположить, что система не заземлена. В таком случае стоит выбрать разрядник с более высоким постоянным напряжением сети и/или уровнем MCOV. Также необходимо обратить особое внимание он на особые области применения разрядника, как, например, третичная обмотка трансформатора, где один из углов треугольника имеет постоянное заземление. В данном случае нормальное напряжение, постоянно воздействующее на разрядник, будет полностью линейным, даже если ограничитель перенапряжения имеет подключение «фаза-земля».
Примеры некоторых из оценок максимальных длительных рабочих напряжений для полимерных разрядников TRANQUELL® Дженерал Электрик отмечены в Таблице 2 ниже.
Временные перенапряжения
Временные перенапряжения могут быть вызваны многочисленными проблемами в системе, например, коммутационными перенапряжениями, однофазным коротким замыканием на землю, сбросом нагрузки и феррорезонансом. Чтобы определить наиболее вероятные формы и причины временных перенапряжений, необходимо оценить характеристики системы и обычные условия эксплуатации. Если подробные исследования временных процессов в системе и расчеты отсутствуют, допустимо, как минимум, оценить перенапряжение из-за однофазного короткого замыкания на землю. Информация о конфигурации заземления системы и ее элементах поможет установить перенапряжения, связанные с однофазным коротким замыканием на землю. Читатель может найти рекомендации по определению величины перенапряжения, связанного с однофазным коротким замыканием на землю, в стандарте ANSI 62.22, согласно которому производится применение ограничителей перенапряжения. Главным результатом воздействия временных перенапряжений на металлооксидные ОПН является увеличение тока и рассеиваемой мощности, а также повышение температуры разрядника.
Способность разрядника выдерживать временные перенапряжения должна соответствовать или превышать ожидаемые временные перенапряжения в системе.
Представленная ниже Таблица 3 определяет устойчивость к временным перенапряжениям всех моделей разрядников GE в расчете на единицу MCOV. В таблице указана максимальная продолжительность и величина временного перенапряжения, которое может быть приложено к разряднику до момента, когда напряжение должно быть снижено до допустимых рабочих показателей. Устойчивость к временным перенапряжениям определена независимо от сопротивления системы и действительна для напряжений, применяемых в месте установки разрядника.
* Уровни предшествующей нагрузки определяют по Таблице 4
Коммутационные перенапряжения
Способность разрядника к рассеиванию энергии коммутационных перенапряжений можно определить количественно. Единица для количественного определения энергетических возможностей ОПН – килоджоули/киловатт (кДж/кВт). Максимально количество энергии, которое может быть рассеяно разрядниками GE TRANQUELL®, указано ниже в Таблице 4. При определении таких возможностей принимаются во внимание множественные разряды, распространенные за одну минуту. В случаях, когда разряды распространяются на протяжении более длительного периода времени, разрядники GE TRANQUELL® имеют гораздо больший потенциал. Как уже отмечалось ранее, при правильном применении разрядники могут повторять эти способности, таким образом, после минутного перерыва разряды можно повторить. Минутный перерыв необходим для достижения однородной температуры диска (дисков). Такие энергетические показатели предполагаю возникновение коммутационных перенапряжений в системах с волновым сопротивлением в несколько сотен Ом, типичным для воздушных линий электропередач. В электросетях с низким волновым сопротивлением, которые имеют такие элементы, как шунтирующие конденсаторы или кабели, возможно снижение энергетической емкости металлооксидных ограничителей перенапряжения, поскольку токи могут превышать значения, указанные ниже в Таблице 4.
Информация о конфигурации системы, типе соединения (звезда/треугольник), наличии или отсутствии заземления является ключевым фактором при выборе уровня срабатывания разрядника. Как указано в Таблице 1, номинальная мощность для систем с различным (линейным) напряжением зависит от конфигурации заземления. Если система имеет глухое заземление, можно использовать разрядник с более низким уровнем срабатывания. Если же система не заземлена, используется временное заземление или заземление через активное сопротивление, стоит отдавать предпочтение более высокому уровню срабатывания, чтобы компенсировать длительное воздействие потенциально высокого постоянного напряжения или MCOV. Кроме систем с глухозаземленной нейтралью, все системы считаются эффективно заземленными, для них необходимо выбирать более высокий уровень срабатывания. Владение информацией о параметрах системы и выбор подходящего уровня срабатывания имеет критическое значение для предотвращения такого использования, которое может привести к резкому сокращению срока службы или отказу разрядника. Если параметры системы неизвестны, читатель должен предположить, что система не заземлена.
Отказ разрядника и сброс давления
Если превышен потенциал ограничителя перенапряжения, металооксидный диск может треснуть или проколоться. Такое повреждение приведет к снижению внутреннего сопротивления разрядника и снизит его устойчивость к будущим проблемам в системе, но не ставит под угрозу защиту изоляции, которая обеспечивается ограничителем перенапряжения.
В маловероятном случае полного отказа разрядника, на месте замыкания на землю возникнет электрическая дуга и давление внутри корпуса будет расти. При условии, что ток короткого замыкания находится в пределах возможностей разрядника, такое давление будет благополучно высвобождено наружу и установится внешняя электрическая дуга. Эта низковольтная дуга будет поддерживать защиту оборудования. Когда разрядник будет успешно провентилирован, он потеряет способность сброса давления/ограничения тока короткого замыкания и должен быть незамедлительно заменен. Для данных целей требуется выбирать ограничитель напряжения, который способен выдерживать большее давление/больший ток короткого замыкания, чем максимальный ток короткого замыкания в месте установки устройства. Также необходимо также учитывать будущее развитие системы.
В таблице 5 ниже приводится перечень сброса давления / ток взрывобезопасности для различных разрядников Дженерал Электрик TRANQUELL ®.
Выводы по выбору и применению ограничителей перенапряжения
В процессе выбора и применения ограничителей перенапряжения необходимо принять во внимание напряжение в системе, ожидаемые условия эксплуатации, и параметры заземления системы (глухо заземленная или эффективно заземленная), в которую будет установлен разрядник. Понятие напряжения в системе охватывает постоянное напряжение в сети, временные и коммутационные перенапряжения. Если этим индивидуальным критериям соответствуют разрядники с разными характеристиками, в результате необходимо выбрать устройство с наилучшими параметрами.