доказать что число является составным
Доказать что число является составным
Составные числа
Число так называемых простых чисел, т. е. целых чисел, больших единицы, не делящихся без остатка ни на какие другие целые числа, кроме единицы и самих себя, бесконечно велико.
Для удобства будем пользоваться условным символом n!, который обозначает произведение всех чисел от 1 до n включительно. Например 5! = 1 × 2 × 3 × 4 × 5. Мы сейчас докажем, что ряд
включительно состоит из n последовательных составных чисел.
состоит из двух слагаемых, каждое из которых кратно 3. Значит, и это число составное.
делится без остатка на 4, так как состоит из слагаемых, кратных 4.
Подобным же образом устанавливаем, что следующее число
кратно 5 и т. д. Иначе говоря, каждое число нашего ряда содержит множитель, отличный от единицы и его самого; оно является, следовательно, составным.
Если вы желаете написать, например, пять последовательных составных чисел, вам достаточно в приведенный выше ряд подставить вместо n число 5. Вы получите ряд
Или еще меньшие числа:
Попробуем теперь решить задачу:
Написать десять последовательных составных чисел.
На основании ранее сказанного устанавливаем, что в качестве первого из искомых десяти чисел можно взять
Искомой серией чисел, следовательно, может служить такая!
Однако существуют серии из десяти гораздо меньших последовательных составных чисел. Так, можно указать на серию даже не из десяти, а из тринадцати составных последовательных чисел уже во второй сотне:
Какие числа называют составными в математике
Составные числа — понятие и определение
Такие числа, которые используют при счете объектов и предметов, называют натуральными.
Натуральные числа бывают простыми и составными.
Если у числа есть только два делителя — единица и само число — то его называют простым. Самое маленькое простое число — это 2.
Например, к простым относят также 3, 5 и 7.
У 3 есть только два делителя: 1 и 3.
Составные числа являются натуральными и имеют больше двух делителей.
Например, 125 делится на 1, 5, 25, 125. Это составное число.
Единица не относится ни к простым, ни к составным натуральным числам.
Делителем числа называют такое число, при делении на которое полученный результат является целым (не имеет остатка).
Нельзя назвать самое большое составное число, потому что их бесконечное множество. Но можно определить самое маленькое натуральное составное число — это 4.
Чем отличаются от простых
Составные числа отличаются от простых тем, что у них есть еще хотя бы один делитель, который не равен единице и самому числу. Простое число имеет только два делителя: единицу и само себя.
С помощью нахождения делителей определяют, является ли число простым или составным. Чтобы найти делители числа, нужно разложить его на множители.
Разложить число на множители — значит, представить его в виде произведения чисел.
Множители подбирают с помощью применения признаков делимости, а также разложения числа на простые множители.
Разложение на простые множители — это математическая операция, которая представляет число в виде произведения простых множителей.
Основная теорема арифметики:
Любое составное число можно разложить на простые множители (представить в виде произведения) единственным способом.
Применение составных чисел
Каждое составное число в математике представляют в виде произведения двух и более натуральных чисел, которые больше единицы.
Составные числа встречаются повсюду:
Числа позволяют создавать математические модели, с опорой на которые принимаются актуальные решения.
Примеры решения задач
Найдите среди чисел 16, 37, 11, 58 и 13 составные.
По определению, число является составным, если оно имеет хотя бы один делитель, кроме 1 и самого себя.
16 делится нацело, например, на 2 и 8, значит, 16 является составным.
37 можно найти в таблице простых чисел.
2 | 79 | 191 | 311 | 439 | 577 | 709 | 857 |
3 | 83 | 193 | 313 | 443 | 587 | 719 | 859 |
5 | 89 | 197 | 317 | 449 | 593 | 727 | 863 |
7 | 97 | 199 | 331 | 457 | 599 | 733 | 877 |
11 | 101 | 211 | 337 | 461 | 601 | 739 | 881 |
13 | 103 | 223 | 347 | 463 | 607 | 743 | 883 |
17 | 107 | 227 | 349 | 467 | 613 | 751 | 887 |
19 | 109 | 229 | 353 | 479 | 617 | 757 | 907 |
23 | 113 | 233 | 359 | 487 | 619 | 761 | 911 |
29 | 127 | 239 | 367 | 491 | 631 | 769 | 919 |
31 | 131 | 241 | 373 | 499 | 641 | 773 | 929 |
37 | 137 | 251 | 379 | 503 | 643 | 787 | 937 |
41 | 139 | 257 | 383 | 509 | 647 | 797 | 941 |
43 | 149 | 263 | 389 | 521 | 653 | 809 | 947 |
47 | 151 | 269 | 397 | 523 | 659 | 811 | 953 |
53 | 157 | 271 | 401 | 541 | 661 | 821 | 967 |
59 | 163 | 277 | 409 | 547 | 673 | 823 | 971 |
61 | 167 | 281 | 419 | 557 | 677 | 827 | 977 |
67 | 173 | 283 | 421 | 563 | 683 | 829 | 983 |
71 | 179 | 293 | 431 | 569 | 691 | 839 | 991 |
73 | 181 | 307 | 433 | 571 | 701 | 853 | 997 |
Число 11 также найдем в таблице простых чисел.
58 можно разделить на 2, так как по признаку делимости, если число оканчивается четной цифрой, то оно делится нацело на 2. Значит, число имеет делитель, который отличается от 1 и 58. Следовательно, 58 — составное.
13 находим в таблице простых чисел.
Докажите, что число 296 является составным.
Число является составным, если у него есть хотя бы один делитель, кроме единицы и самого себя.
Для нахождения делителя, используем признаки делимости.
296 заканчивается на 6. Цифра 6 — четная, значит, по признаку делимости число делится без остатка на 2. И, если у него есть хотя бы один делитель, кроме 1 и 296 (в данном случае это 2), то оно является составным.
Что и требовалось доказать.
Можно ли говорить о том, что все четные числа являются составными?
Ответ: нет, так как, например, число 2 является четным, но при этом простым, потому что имеет только два делителя — 1 и 2.
Приведите примеры четырех составных чисел, кратных 3.
Числа, которые кратны трем, делятся на 3 нацело.
Вспоминаем признак делимости на 3: сумма цифр числа должна делиться нацело на 3.
Тогда нужными нам примерами могут быть: 27, 126, 45 и 99.
27: составное число, так как имеет хотя бы один делитель, кроме 1 и самого себя — это 3. Сумма цифр числа равняется 9. Девять кратно 3.
126: составное, так как делится нацело на 2 — в разряде единиц стоит четная цифра 6. Сумма цифр — 1 + 2 + 6 = 9 — 9 кратно 3.
45: составное, делится нацело на 5 по признаку делимости. Сумма цифр равна 9, девять кратно 3.
99: составное, так как делится нацело на 9 по признаку делимости. Сумма цифр равна 18, а 18 кратно 3.