ΠΠ°ΠΊ ΡΠ΅ΡΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ β ΡΡΠΎ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΡΠ°Π²Π½Ρ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΠ΄Π²ΠΎΠ΅Π½Π½Π°Ρ ΡΡΠΌΠΌΠ° Π΄Π²ΡΡ Π΅Π³ΠΎ ΡΠΌΠ΅ΠΆΠ½ΡΡ ΡΠ΅Π±Π΅Ρ.
Π‘Π²ΠΎΠΉΡΡΠ²Π°
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ², Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΡ. ΠΡΠ΅ ΠΎΠ½ΠΈ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΠΈΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ².
ΠΡΡΠΎΡΠΎΠΆΠ½ΠΎ! ΠΡΠ»ΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡ ΠΏΠ»Π°Π³ΠΈΠ°Ρ Π² ΡΠ°Π±ΠΎΡΠ΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΊΡΡΠΏΠ½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡΡ Π΄ΠΎ ΠΎΡΡΠΈΡΠ»Π΅Π½ΠΈΡ). ΠΡΠ»ΠΈ Π½Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π½Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΌΠΎΠΌΡ, Π·Π°ΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΡ.
ΠΠΎ ΡΡΠΌΠΌΠ΅ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° β ΡΡΠΎ ΡΠ΄Π²ΠΎΠ΅Π½Π½Π°Ρ ΡΡΠΌΠΌΠ° Π΄Π²ΡΡ Π΅Π³ΠΎ ΡΠΌΠ΅ΠΆΠ½ΡΡ ΡΠ΅Π±Π΅Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
Π³Π΄Π΅ a ΠΈ b β ΡΡΠΎ Π΄Π²Π΅ ΡΠΌΠ΅ΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠΎ ΡΡΠΎΡΠΎΠ½Π΅ ΠΈ Π΄Π²ΡΠΌ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌ
ΠΡΠ»ΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ Π΄Π°Π½Π° Π»ΠΈΡΡ ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π°, Π½ΠΎ ΠΎΠ±Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ Π²ΡΠΎΡΡΡ ΡΡΠΎΡΠΎΠ½Ρ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
Π³Π΄Π΅ \(d_1\) ΠΈ \(d_2\) β ΡΡΠΎ ΠΎΠ±Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠΈΠ³ΡΡΡ.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΠ°ΡΡΠ΅Ρ ΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ Π΄Π»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ:
ΠΠΎ ΡΡΠΎΡΠΎΠ½Π΅, Π²ΡΡΠΎΡΠ΅ ΠΈ ΡΠΈΠ½ΡΡΡ ΡΠ³Π»Π°
Π ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π»ΠΈΡΡ ΠΎΠ΄Π½ΠΎ ΡΠ΅Π±ΡΠΎ, Π²ΡΡΠΎΡΠ° ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ³Π»ΠΎΠ², ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ Π΄Π»ΠΈΠ½Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π±ΡΠ° ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π³Π΄Π΅ \(h_b\) β Π²ΡΡΠΎΡΠ°, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅, Π° \(sin\alpha\) β ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ Π½Π°ΠΌ ΡΠ³ΠΎΠ».
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ:
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ
ΠΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π°Π΄Π°Ρ Π½Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°.
ΠΠ°Π΄Π°ΡΠ° 1
ΠΠ°Π½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ ΡΠΎ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ 5 ΡΠΌ ΠΈ 9 ΡΠΌ. ΠΡΡΠΈΡΠ»ΠΈΡΡ Π΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ P=2(a+b), ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΈΠ³ΡΡΡ. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ: P=2(5+9)=28 ΡΠΌ.
ΠΠ°Π΄Π°ΡΠ° 2
ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΠ΄Π½Π° ΠΈΠ· ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ°Π²Π½Π° 4 ΡΠΌ, Π° Π΄Π²Π΅ Π΅Π³ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠ°Π²Π½Ρ 6 ΡΠΌ ΠΈ 8 ΡΠΌ. ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
ΠΠ°Π΄Π°ΡΠ° 3
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ ΠΈ Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
\(\blacktriangleright\) ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΡΠ°Π²Π½Ρ;
\(\blacktriangleright\) ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»ΡΡΡΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ;
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°.
ΠΡΠ»ΠΈ Π΄Π»Ρ Π²ΡΠΏΡΠΊΠ»ΠΎΠ³ΠΎ ΡΠ΅ΡΡΡΠ΅Ρ
ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ, ΡΠΎ ΡΡΠΎ β ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ:
\(\blacktriangleright\) Π΅ΡΠ»ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΡΠ°Π²Π½Ρ;
\(\blacktriangleright\) Π΅ΡΠ»ΠΈ Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ;
\(\blacktriangleright\) Π΅ΡΠ»ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»ΡΡΡΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ;
\(\blacktriangleright\) Π΅ΡΠ»ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ³Π»Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΡΠ°Π²Π½Ρ.
ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠΎΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΡΠ° Π²ΡΡΠΎΡΠ°.
ΠΠ°Π΄Π°ΡΠΈ ΠΈΠ· ΡΠ°Π·Π΄Π΅Π»Π° Β«ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈΒ» ΡΠ²Π»ΡΡΡΡΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΡΡ Π°ΡΡΠ΅ΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° Ρ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠΎΠ² ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Ρ. Π’Π΅ΠΌΠ΅ Β«ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ ΠΈ Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°Β» Π² ΠΠΠ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎ ΠΎΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ°Π·Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π°Π΄Π°Π½ΠΈΠΉ. ΠΠ½ΠΈ ΠΌΠΎΠ³ΡΡ ΡΡΠ΅Π±ΠΎΠ²Π°ΡΡ ΠΎΡ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΊΠ°ΠΊ ΠΊΡΠ°ΡΠΊΠΎΠ³ΠΎ, ΡΠ°ΠΊ ΠΈ ΡΠ°Π·Π²Π΅ΡΠ½ΡΡΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΡΡΠ΅ΠΆΠ°. ΠΠΎΡΡΠΎΠΌΡ Π΅ΡΠ»ΠΈ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΡΠΈΡ ΡΠ»Π°Π±ΡΡ ΠΌΠ΅ΡΡ ΡΠ²Π»ΡΡΡΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ Π·Π°Π΄Π°ΡΠΈ Π½Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄Π΅ΠΉ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΈΠ»ΠΈ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½ ΠΈ ΡΠ³Π»ΠΎΠ², ΡΠΎ Π²Π°ΠΌ Π½Π΅ΠΏΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΡΡΠΎΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΠΈΡΡ ΠΈΠ»ΠΈ Π²Π½ΠΎΠ²Ρ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅.
Π‘Π΄Π΅Π»Π°ΡΡ ΡΡΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π²Π°ΠΌ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΠΎΡΡΠ°Π» Β«Π¨ΠΊΠΎΠ»ΠΊΠΎΠ²ΠΎΒ». ΠΠ°ΡΠΈ ΠΎΠΏΡΡΠ½ΡΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΠ»ΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠΉ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π», ΠΈΠ·Π»ΠΎΠΆΠΈΠ² Π΅Π³ΠΎ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΈ Ρ Π»ΡΠ±ΡΠΌ ΡΡΠΎΠ²Π½Π΅ΠΌ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠΌΠΎΠ³Π»ΠΈ Π²ΠΎΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠΎΠ±Π΅Π»Ρ Π² Π·Π½Π°Π½ΠΈΡΡ ΠΈ Π»Π΅Π³ΠΊΠΎ ΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΠΈ ΠΠΠ Π½Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄Π΅ΠΉ, ΡΡΠΎΡΠΎΠ½, ΡΠ³Π»ΠΎΠ² ΠΈΠ»ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π±ΠΈΡΡΠ΅ΠΊΡΡΠΈΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°. ΠΠ°ΠΉΡΠΈ Π±Π°Π·ΠΎΠ²ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ Β«Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΏΡΠ°Π²ΠΊΠ°Β».
Π§ΡΠΎΠ±Ρ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΠΈ ΠΠΠ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ Β«ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ ΠΈ Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°Β», ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌ ΠΏΠΎΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ Π² Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΠΉ. ΠΠΎΠ»ΡΡΠ°Ρ ΠΏΠΎΠ΄Π±ΠΎΡΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π² Π±Π»ΠΎΠΊΠ΅ Β«ΠΠ°ΡΠ°Π»ΠΎΠ³Β». Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ ΠΏΠΎΡΡΠ°Π»Π° Β«Π¨ΠΊΠΎΠ»ΠΊΠΎΠ²ΠΎΒ» ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΡΡΡ ΠΈ ΠΎΠ±Π½ΠΎΠ²Π»ΡΡΡ Π΄Π°Π½Π½ΡΠΉ ΡΠ°Π·Π΄Π΅Π».
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ ΡΡΠ°ΡΠΈΠ΅ΡΡ ΠΈΠ· ΠΠΎΡΠΊΠ²Ρ ΠΈ Π΄ΡΡΠ³ΠΈΡ Π³ΠΎΡΠΎΠ΄ΠΎΠ² ΠΌΠΎΠ³ΡΡ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½. ΠΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π»ΡΠ±ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡ ΡΠ°Π½ΠΈΡΡ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ Β«ΠΠ·Π±ΡΠ°Π½Π½ΠΎΠ΅Β» ΠΈ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ Π²Π΅ΡΠ½ΡΡΡΡΡ ΠΊ Π½Π΅ΠΌΡ, ΡΡΠΎΠ±Ρ ΠΎΠ±ΡΡΠ΄ΠΈΡΡ Ρ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ (Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ°ΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? ΠΠ°Π³Π»Π°Π²Π½ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ P. ΠΠΎΠ΄ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ P ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΏΠΎ Ρ ΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? Π ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΠΈ Π΄Π»ΠΈΠ½Π° β Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡ, ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡ, ΠΌΠ΅ΡΡ, ΡΡΡ, Π΄ΡΠΉΠΌ, Π»ΠΎΠΊΠΎΡΡ ΠΈ Π΄Ρ.
ΠΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΡΠ°Π·Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ, ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ. ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΠΎΠ΄Π½Ρ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π€ΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ°ΠΊ ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π Π·Π½Π°ΡΠΈΡ, ΡΡΠΎΠ±Ρ Π΅Π³ΠΎ Π½Π°ΠΉΡΠΈ, Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π΄Π»ΠΈΠ½Ρ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ.
Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ
Π£ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ. Π Π·Π½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ, Ρ. Π΅. Π½Π° 3.
P = 3 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ: ΡΠΌΠ½ΠΎΠΆΠΈΠ² Π΄Π»ΠΈΠ½Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΈ ΡΠΎΠΌΠ±Π° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ P = 4 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
Π ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ n-ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠ°Ρ: P = n β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ, n β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΠΎΡΠΎΠ½.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ
Π£ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»Π΅Π³ΠΊΠΎ, Π·Π½Π°Ρ Π΄Π²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ.
P = 2 β (a + b), Π³Π΄Π΅ a β ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π°, b β ΡΠΎΡΠ΅Π΄Π½ΡΡ ΡΡΠΎΡΠΎΠ½Π°.
ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ
Π£ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π½Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠΎ Ρ Π½Π΅Π΅ Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, Π·Π½Π°Ρ ΡΠ°Π΄ΠΈΡΡ. ΠΠ»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄Π²Π° ΡΠ°Π΄ΠΈΡΡΠ° ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅ΡΡ.
L = d β Ο = 2 β r β Ο, Π³Π΄Π΅ d β Π΄ΠΈΠ°ΠΌΠ΅ΡΡ, r β ΡΠ°Π΄ΠΈΡΡ, Ο β ΡΡΠΎ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΡΠ°ΠΆΠ°Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΡ, ΠΎΠ½Π° ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π²Π½Π° 3,14.
ΠΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π° ΠΌΠΎΠΆΠ½ΠΎ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎ ΡΡΠΌΠΌΠ΅ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· ΠΏΡΠΎΡΠ²Π»ΡΡΡ ΡΠΌΠ΅ΠΊΠ°Π»ΠΊΡ ΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ, ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡ!
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ
Π Π°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ 40 ΡΠΌ, Π΄Π»ΠΈΠ½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 6 ΡΠΌ. ΠΠ°ΠΊΡΡ Π΄Π»ΠΈΠ½Ρ Π±ΡΠ΄ΡΡ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ?
ΠΡΠ²Π΅Ρ: Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ ΠΏΠΎ 17 ΡΠΌ.
Π Π°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΏΡΡΠΈΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ 4 ΡΠΌ. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ β Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΊΠΎΠ»Π΅ Skysmart!
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ. Π€ΠΎΡΠΌΡΠ»Ρ, ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π ΠΈΡ.1 | Π ΠΈΡ.2 |
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
AB||CD, AB = CD (ΠΈΠ»ΠΈ BC||AD, BC = AD)
β ABC + β BCD = β BCD + β CDA = β CDA + β DAB = β DAB + β DAB = 180Β°
AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
β ABC + β BCD + β CDA + β DAB = 360Β°
β ABC + β BCD = β BCD + β CDA = β CDA + β DAB = β DAB + β DAB = 180Β°
8. ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ ΠΈ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»ΡΡ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π° ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ:
AO = CO = | d 1 |
2 | |
BO = DO = | d 2 |
2 |
AC 2 + BD 2 = 2AB 2 + 2BC 2
Π‘ΡΠΎΡΠΎΠ½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½ ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
1. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ:
2. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ Π΄ΡΡΠ³ΡΡ ΡΡΠΎΡΠΎΠ½Ρ:
3. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π²ΡΡΠΎΡΡ ΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π°:
a = | h b |
sin Ξ± |
b = | h a |
sin Ξ± |
4. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΈ Π²ΡΡΠΎΡΡ:
a = | S |
ha |
b = | S |
hb |
ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
d 2 = β a 2 + b 2 + 2 abΒ·cosΞ²
d 1 = β a 2 + b 2 + 2 abΒ·cosΞ±
4. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΏΠ»ΠΎΡΠ°Π΄Ρ, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌΠΈ:
d 1 = | 2S | = | 2S |
d 2Β· sinΞ³ | d 2Β· sinΞ΄ |
d 2 = | 2S | = | 2S |
d 1Β· sinΞ³ | d 1Β· sinΞ΄ |
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
P = 2 a + 2 b = 2( a + b )
3. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΎΠ΄Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ, Π²ΡΡΠΎΡΡ ΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π°:
P = | 2( b + | h b | ) |
sin Ξ± |
P = | 2( a + | h a | ) |
sin Ξ± |
ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
3. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ:
S = | 1 | d 1 d 2 sin Ξ³ |
2 |
S = | 1 | d 1 d 2 sin Ξ΄ |
2 |
ΠΡΠ±ΡΠ΅ Π½Π΅ΡΠ΅Π½Π·ΡΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π±ΡΠ΄ΡΡ ΡΠ΄Π°Π»Π΅Π½Ρ, Π° ΠΈΡ Π°Π²ΡΠΎΡΡ Π·Π°Π½Π΅ΡΠ΅Π½Ρ Π² ΡΠ΅ΡΠ½ΡΠΉ ΡΠΏΠΈΡΠΎΠΊ!
ΠΠΎΠ±ΡΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°ΡΡ Π½Π° OnlineMSchool.
ΠΠ΅Π½Ρ Π·ΠΎΠ²ΡΡ ΠΠΎΠ²ΠΆΠΈΠΊ ΠΠΈΡ
Π°ΠΈΠ» ΠΠΈΠΊΡΠΎΡΠΎΠ²ΠΈΡ. Π― Π²Π»Π°Π΄Π΅Π»Π΅Ρ ΠΈ Π°Π²ΡΠΎΡ ΡΡΠΎΠ³ΠΎ ΡΠ°ΠΉΡΠ°, ΠΌΠ½ΠΎΡ Π½Π°ΠΏΠΈΡΠ°Π½ Π²Π΅ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π», Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΎΠ½Π»Π°ΠΉΠ½ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ ΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ
Π ΠΈΡ.1 | Π ΠΈΡ.2 |
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
AB||CD, AB = CD (ΠΈΠ»ΠΈ BC||AD, BC = AD)
β ABC + β BCD = β BCD + β CDA = β CDA + β DAB = β DAB + β DAB = 180Β°
AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
β ABC + β BCD + β CDA + β DAB = 360Β°
β ABC + β BCD = β BCD + β CDA = β CDA + β DAB = β DAB + β DAB = 180Β°
8. ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ ΠΈ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π΅Π»ΡΡ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π° ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ:
AO = CO = | d 1 |
2 | |
BO = DO = | d 2 |
2 |
AC 2 + BD 2 = 2AB 2 + 2BC 2
Π‘ΡΠΎΡΠΎΠ½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½ ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
1. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ:
2. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ Π΄ΡΡΠ³ΡΡ ΡΡΠΎΡΠΎΠ½Ρ:
a = | β 2 d 1 2 + 2 d 2 2 β 4 b 2 |
2 |
b = | β 2 d 1 2 + 2 d 2 2 β 4 a 2 |
2 |
3. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π²ΡΡΠΎΡΡ ΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π°:
a = | h b |
sin Ξ± |
b = | h a |
sin Ξ± |
4. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠΎΡΠΎΠ½ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΈ Π²ΡΡΠΎΡΡ:
a = | S |
ha |
b = | S |
hb |
ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
d 1 = β a 2 + b 2 β 2 abΒ·cosΞ²
d 2 = β a 2 + b 2 + 2 abΒ·cosΞ²
d 1 = β a 2 + b 2 + 2 abΒ·cosΞ±
d 2 = β a 2 + b 2 β 2 abΒ·cosΞ±
d 1 = β 2 a 2 + 2 b 2 β d 2 2
d 2 = β 2 a 2 + 2 b 2 β d 1 2
4. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΏΠ»ΠΎΡΠ°Π΄Ρ, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌΠΈ:
d 1 = | 2S | = | 2S |
d 2Β· sinΞ³ | d 2Β· sinΞ΄ |
d 2 = | 2S | = | 2S |
d 1Β· sinΞ³ | d 1Β· sinΞ΄ |
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
P = 2 a + 2 b = 2( a + b )
P = 2 a + β 2 d 1 2 + 2 d 2 2 β 4 a 2
P = 2 b + β 2 d 1 2 + 2 d 2 2 β 4 b 2
3. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΎΠ΄Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ, Π²ΡΡΠΎΡΡ ΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π°:
P = | 2( b + | h b | ) |
sin Ξ± |
P = | 2( a + | h a | ) |
sin Ξ± |
ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°
Π€ΠΎΡΠΌΡΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
3. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ:
S = | 1 | d 1 d 2 sin Ξ³ |
2 |
S = | 1 | d 1 d 2 sin Ξ΄ |
2 |
ΠΡΠ±ΡΠ΅ Π½Π΅ΡΠ΅Π½Π·ΡΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π±ΡΠ΄ΡΡ ΡΠ΄Π°Π»Π΅Π½Ρ, Π° ΠΈΡ Π°Π²ΡΠΎΡΡ Π·Π°Π½Π΅ΡΠ΅Π½Ρ Π² ΡΠ΅ΡΠ½ΡΠΉ ΡΠΏΠΈΡΠΎΠΊ!
ΠΠΎΠ±ΡΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°ΡΡ Π½Π° OnlineMSchool.
ΠΠ΅Π½Ρ Π·ΠΎΠ²ΡΡ ΠΠΎΠ²ΠΆΠΈΠΊ ΠΠΈΡ
Π°ΠΈΠ» ΠΠΈΠΊΡΠΎΡΠΎΠ²ΠΈΡ. Π― Π²Π»Π°Π΄Π΅Π»Π΅Ρ ΠΈ Π°Π²ΡΠΎΡ ΡΡΠΎΠ³ΠΎ ΡΠ°ΠΉΡΠ°, ΠΌΠ½ΠΎΡ Π½Π°ΠΏΠΈΡΠ°Π½ Π²Π΅ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π», Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΎΠ½Π»Π°ΠΉΠ½ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ ΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ β ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌΠΈ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ.
ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π΄Π»ΠΈΠ½Ρ. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π½Π°Ρ ΠΎΠ΄ΡΡ ΠΊΠ°ΠΊ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΡΡ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½:
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
1. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
2. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· 1-Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ ΠΈ 2-Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ:
3. Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· 1-Π½Ρ ΡΡΠΎΡΠΎΠ½Ρ, Π²ΡΡΠΎΡΡ ΠΈ sin ΡΠ³Π»Π°:
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°:
1. ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ
2. ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ³Π»Ρ ΡΠ°Π²Π½Ρ
3. Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, Π΄Π΅Π»ΠΈΡ ΠΈΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ
1. ΠΠ»ΠΈΠ½Π° Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΡΡΠΎΡΠΎΠ½Ρ, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ ΠΈ ΡΠ³ΠΎΠ».
D β Π±ΠΎΠ»ΡΡΠ°Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ
d β ΠΌΠ΅Π½ΡΡΠ°Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ
2. ΠΠ»ΠΈΠ½Π° Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΏΠ»ΠΎΡΠ°Π΄Ρ, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ ΠΈ ΡΠ³ΠΎΠ».
D β Π±ΠΎΠ»ΡΡΠ°Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ
d β ΠΌΠ΅Π½ΡΡΠ°Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ
S β ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ°