Как решаются сложные уравнения
Решение сложных уравнений. 5 класс
Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.
Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.
Но решение составных уравнений производится в определённой последовательности.
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Всё верно. Значит уравнение решено правильно.
Другой способ решения сложных уравнений
Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.
Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.
Упрощение выражений в уравнениях
Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.
Левую часть уравнения можно упростить. Сделаем это.
Теперь решим простое уравнение по правилу нахождения неизвестного множителя.
Как решать сложные составные уравнения?
Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.
Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.
Но решение составных уравнений производится в определённой последовательности.
Расставляем порядок действий в уравнении.
Решаем как простое уравнение и находим «5y». Вспомним правило для нахождения неизвестного уменьшаемого.
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
Теперь перед нами простое уравнение. Необходимо найти неизвестный множитель. Решаем уравнение по следующему правилу.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Не забудем выполнить проверку.
Всё верно. Значит уравнение решено правильно.
Другой способ решения сложных уравнений
Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.
Упрощаем выражение, стоящее в левой части уравнения, используя одно из свойств вычитания.
Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.
Далее решаем простое уравнение, пользуясь правилом нахождения неизвестного слагаемого.
Упрощение выражений в уравнениях
Запомните!
Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.
Левую часть уравнения можно упростить. Сделаем это.
Теперь решим простое уравнение по правилу нахождения неизвестного множителя.
Завершив пример, выполним проверку.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-326081
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В России утвердили новый порядок формирования федерального перечня учебников
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Школьников Улан-Удэ перевели на удаленку из-за гриппа и ОРВИ
Время чтения: 1 минута
НИУ ВШЭ откроет первую в России магистратуру по управлению низкоуглеродным развитием
Время чтения: 2 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Костромская область разработала программу привлечения педагогических кадров
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Памятка «Как составлять и решать сложные уравнения?»
Памятка «Как составлять и решать сложные уравнения?»
Просмотр содержимого документа
«Памятка «Как составлять и решать сложные уравнения?»»
Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.
Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.
Но решение составных уравнений производится в определённой последовательности.
Расставляем порядок действий в уравнении.
Определяем неизвестное по последнему действию. Последнее действие в данном уравнении — это вычитание. Обращаем ваше внимание, что на этом этапе наше неизвестное — это «5y», и именно его мы рассматриваем как уменьшаемое.
Решаем как простое уравнение и находим «5y». Вспомним правило для нахождения неизвестного уменьшаемого.
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
Теперь перед нами простое уравнение. Необходимо найти неизвестный множитель. Решаем уравнение по следующему правилу.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Не забудем выполнить проверку.
Всё верно. Значит уравнение решено правильно.
Другой способ решения сложных уравнений
Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.
Упрощаем выражение, стоящее в левой части уравнения, используя одно из свойств вычитания.
Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.
Далее решаем простое уравнение, пользуясь правилом нахождения неизвестного слагаемого.
Упрощение выражений в уравнениях
Запомните!
Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.
Левую часть уравнения можно упростить. Сделаем это.
Теперь решим простое уравнение по правилу нахождения неизвестного множителя.
Как решаются сложные уравнения
17 комментариев:
Спасибо, Анна Анатольевна! Потренировались решать уравнения по алгоритму, стало получаться!
Спасибо! Победил с дочкой сложные уравнения.
большое спасибо за помощь
выручили))
спасибо вам огромное!
теперь я всё поняла!
Пожалуйста! Учитесь только с удовольствием!
И Вам спасибо за отклик! Рада, что помогла!
Спасибо огромное! Помогли подготовиться к контрольной;)
Спасибо большое! Теперь можно научить решать составные уравнения!
Здравствуйте, не знаю, как объяснить ребенку вот это уравнение 56-(х-15)=30
56 уменьшаемое (х-15) вычитаемое 30 разность. Тогда чтобы узнать это неизвестное вычитание, нужно из уменьшаемого вычесть разность. 56-30=26 Дальше, если 26 = х-15, т.е. х-15=26 то тут уже понятно 26+15=41
Спасибо! Завтра постараюсь ответить у доски надеюсь получится
Спасибо огромное. Анна Анатольевна. Сразу смог объяснить ребенку суть.
Очень рада, что «подсказки» помогают! В программе начальной школы сложные уравнения убрали, но для олимпиадных заданий будут отличной тренировкой.
Как решать уравнения: от простого к сложному 2-4 класс
Любые уравнения решаются на основе зависимости между компонентами. Простые уравнения учащиеся начальной школы начинают решать уже 2 классе. По мере взросления, усложняются и уравнения, переходя от простых к сложным уравнениям в 4 классе начальной школы.
Простые уравнения во 2 классе решают на основе взаимосвязей между компонентами при сложении или вычитании. Важно соблюдать алгоритм решения уравнения.
Решение уравнения
Объяснение
чтобы найти первое слагаемое, нужно из суммы вычесть второе слагаемое.
Проверяю: 28 + 7 = 35
чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.
Вычисляю: 20 + 13 = 33
чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность
Простые уравнения вида х • 6 = 72, х : 8 = 12, 64 : х = 16 решают на основе взаимосвязей между результатами и компонентами действий.
Решение уравнения
Объяснение
1) Читаю уравнение: произведение х и 6 равно 72.
2) Вспоминаю правило: чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
3) Вычисляю: х = 72 : 6
4) Проверяю: 12 • 6 = 72
1) Читаю уравнение: частное х и 8 равно 12.
2) Вспоминаю правило: чтобы найти неизвестное делимое, надо частное умножить на делитель.
3) Вычисляю: х = 12 • 8
4) Проверяю: 96 : 8 = 12
1) Читаю уравнение: частное 64 и х равно 16.
2) Вспоминаю правило: чтобы найти неизвестный делитель, надо делимое разделить на частное.
3) Вычисляю: х = 64 : 16
4) Проверяю: 64 : 4 = 16
Сложные уравнения в начальной школе состоят из нескольких арифметических действий. Алгоритм решения заключается в превращение сложного уравнения в простое.
Уравнения на нахождение неизвестного слагаемого
1)Вычисляю значение выражения в правой части уравнения: 12 • 4 = 48.
2) В уравнении х + 13 = 48 неизвестно первое слагаемое.
3) Вспоминаю правило: чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
5) Проверяю: 35 + 13 = 12 • 4
Уравнения на нахождение неизвестного уменьшаемого
1) Вычисляю значение выражения в правой части уравнения: 51 : 17 = 3.
3) Вспоминаю правило: чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
4) Вычисляю: х = 24 + 3
Уравнения на нахождение неизвестного вычитаемого
1) Вычисляю значение выражения в правой части уравнения: 180 + 120 = 300.
2) В уравнении 640 – х = 300 неизвестно вычитаемое.
3) Вспоминаю правило: чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.
4) Вычисляю: х = 649 – 300
Уравнения на нахождение неизвестного множителя
1) Вычисляю значение выражения в правой части уравнения: 131 + 254 = 385.
2) В уравнении 5 • х = 385 неизвестен второй множитель.
3) Вспоминаю правило: чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
4) Вычисляю: х = 385 : 5
5) Проверяю: 5 • 77 = 131 + 254
Уравнения на нахождение неизвестного делимого
64 000 : 8 = 800 • 10
1) Вычисляю значение выражения в правой части.
2) Вспоминаю правило: чтобы найти делимое, нужно частное умножить на делитель.
Уравнения на нахождение неизвестного делителя
1) Вычисляю значение выражения вправой части.
2) Вспоминаю правило: чтобы найти неизвестный делитель, нужно делимоеразделить на частное.
Как решать сложные уравнения в 4 классе подробно рассмотрено в статье по ссылке.