Как решать пределы с синусами
Пределы с тригонометрическими функциями
Существует множество различных пределов тригонометрических функций. На помощь могут прийти основные методы вычисления:
Рассмотрим примеры подробного решения тригонометрических пределов для разбора каждого способа. Стоит отметить, что все методы можно комбинировать в одной задаче между собой для ускорения процесса вычисления.
Подставляем получившиеся преобразования, чтобы применить формулу первого замечательного предела.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Обратим внимание на корень в числителе. От него нужно избавиться путём умножения и деления на сопряженное к нему число (отличающееся знаком между слагаемыми).
Видим, что в знаменателе появился синус, а это значит, что можно избавиться от него с помощью первого замечательного предела. Как в предыдущем примере одновременно умножаем и делим на аргумент синуса.
Подставляем преобразование синуса, чтобы применить замечательный предел.
Берем производные числителя и знаменателя дроби, стоящей в показателе экспоненты.
Подставляем полученное выражение под знак предела и пременяем свойство предела для показательной функции.
Итак, в пределе неопределенность ноль делить на ноль. Выполним замены на эквивалентные функции.
Подставляем в предел и получаем готовый ответ.
Примеры решения пределов тригонометрических функций с ответами
Простое объяснение принципов решения пределов тригонометрических функций и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.
Алгоритм решения пределов тригонометрических функций
Для тригонометрических функций существует много разных пределов, но как правило, все они вычисляются, опираясь на первый замечательный предел и его следствия.
Первый замечательный предел выглядит следующим образом:
Главным следствием первого замечательного предела считают:
Также следствиями являются:
Нужна помощь в написании работы?
Примеры решения пределов тригонометрических функций
Задание
Найти предел функции:
Решение
Заменим значение х на число, к которому стремится функция:
Так как мы пришли на неопределённость вида 0/0, преобразуем синус так, чтобы он стал вида первого замечательного предела:
Мы знаем, что первый замечательный предел равен единице, следовательно
Таким образом найдём предел функции:
Задание
Найти предел функции:
Решение
При замене х на число, к которому он стремится, снова получаем неопределённость
Данную задачу можно решить, применив правило Лопиталя.
Найдём производные числителя и знаменателя функции и решим задачу:
Задание
Найти предел функции:
Решение
При подстановке нуля получим неопределённость типа 0/0:
Преобразуем функцию и упростим её:
Вынесем константу ½ за лимит и, пользуюсь свойством первого замечательного предела, найдём передел данной функции:
Задание
Найти предел функции:
Решение
Если заменить x на число, придём к неопределённости 0/0:
Для решения данного примера применим правило Лопиталя и заменим х на число в производных:
Задание
Вычислить предел функции:
Решение
Для решения данного примера воспользуемся свойством разности косинусов:
Вынесем минус за лимит, дабы не потерять и продолжим решение. Для решения задачи приведём функцию к виду первого замечательного предела. Для этого нужно разделить дробь на множители и добавить в знаменатель коэффициент, равный коэффициенту в числителе. А потом упростим выражение:
Снова вынесем константы за лимит и получим вид первого замечательного предела, с помощью которого приходим к искомому решению:
Задание
Вычислить предел функции:
Решение
При подстановке х снова получаем неопределённость
Значит будем искать передел путём приведения к виду первого замечательного предела.
Представим тангенс в виде частного синуса х и косинуса х
Приведём к общему знаменателю и разделим выражение на множители следующим образом:
Мы видим первый замечательный предел, а значит, можем упростить до:
Далее снова приведём числитель к общему знаменателю:
Вновь разделим на множители и подставим значение х во второй косинус:
Таким образом нам остаётся разобраться с первым числителем. Поменяем местами 1 и косинус и вынесем минус за лимит.
Далее воспользуемся формулой понижения степени и найдём решение:
Задание
Вычислить предел функции:
Решение
При простом вычислении получаем неопределённость
Следовательно, будем вычислять предел, опираясь на правило первого замечательного предела. Приведём тангенс к виду частного синуса и косинуса:
Разделим пример на множители.
Приведём синусы к виду первого замечательного предела и получим ответ:
Задание
Найти предел функции:
Решение
При подставлении числа на место х приходим к неопределённости типа 0/0:
Преобразуем tg, приведем выражение к общему знаменателю cos x, вынесем общий множитель – sin x за скобку:
Используя следствие из первого замечательного предела, преобразим выражение и избавимся от тангенса.
Затем вновь приведем функцию к следствию первого замечательного предела и найдем ответ:
Задание
Найти предел функции:
Решение
При подстановке числа видим неопределённость.
Следовательно, искать предел будем, опираясь на правило первого замечательного предела. Для этого заменим переменную, которая будет стремиться к нулю:
Подставим в функцию:
Опираясь на свойства тригонометрии, заменим тангенс.
Зная, что предел косинуса нуля = 1, преобразуем пример и приведём к виду первого замечательного предела.
Найдём ответ.
Задание
Вычислить предел функции:
Решение
Здесь так же получим неопределённость:
Значит, введём новую переменную t:
Подставим получившиеся значения в пример и найдём предел:
Средняя оценка 4.5 / 5. Количество оценок: 2
Поставьте вашу оценку
Сожалеем, что вы поставили низкую оценку!
Позвольте нам стать лучше!
Расскажите, как нам стать лучше?
Смотрите также
Закажите помощь с работой
Не отобразилась форма расчета стоимости? Переходи по ссылке
Первый замечательный предел
Первый замечательный предел часто применяется для вычисления пределов содержащих синус, арксинус, тангенс, арктангенс и получающихся при них неопределенностей ноль делить на ноль.
Формула
Для применения формулы необходимо, чтобы были соблюдены два условия:
Следствия
Достаточно редко в задания можно увидеть чистый первый замечательный предел, в котором можно сразу было бы записать ответ. На практике всё немного сложнее выглядит, но для таких случаев будет полезно знать следствия первого замечательного предела. Благодаря им можно быстро вычислить нужные пределы.
Примеры решений
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Теперь видим в числителе и знаменателе появились выражения подходящие под формулу и следствия. Аргумент синуса и аргумент тангенса совпадают для соответствующих знаменателей
В статье: «Первый замечательный предел, примеры решения» было рассказано о случаях, в которых целесообразно использовать данную формулу и её следствия.
Первый замечательный предел
Первым замечательным пределом именуют следующее равенство:
Часто используются также следствия из первого замечательного предела:
На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти тут.
Равенства а), б), в) часто используются наряду с первым замечательным пределом.
Вернемся к пределу:
Вернемся к рассматриваемому пределу:
Переходя в заданном пределе к синусам, будем иметь:
Используя указанную формулу, получим:
Аналогичную задачу можно посмотреть в решебнике Демидовича (№475)
В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.
Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.
Каким будет решение с использованием первого замечательного предела? показать\скрыть
При использовании первого замечательного предела получим:
Второй замечательный предел
Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:
Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.
Формула и следствия
Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.
Примеры решений
Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.
Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:
Смотрим на второе следствие и записываем ответ:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Уже теперь применяем формулу и получаем:
Подгоняем дробь под формулу 2-го замеч. предела:
Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.
Начинаем с проверки равен ли предел основания единице. Имеем:
Продолжаем вычисление предела:
Начинаем с проверки равен ли предел основания единице. Имеем:
Продолжаем вычисление предела:
В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.
3>2>