Как решать четырехэтажные дроби
Сложные выражения с дробями. Порядок действий
Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?
В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:
Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.
Задача. Найдите значения выражений:
Переведем все дроби из первого выражения в неправильные, а затем выполним действия:
Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.
Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:
Многоэтажные дроби
До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.
Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:
Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:
Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:
Задача. Переведите многоэтажные дроби в обычные:
В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Получаем:
В последнем примере перед окончательным умножением дроби были сокращены.
Специфика работы с многоэтажными дробями
В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:
Это выражение можно прочитать по-разному:
Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:
Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.
Если следовать этому правилу, то приведенные выше дроби надо записать так:
Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:
Задача. Найдите значения выражений:
Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:
Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:
Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили в форме дроби, чтобы выполнить деление.
Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.
Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.
Многоэтажные дроби
В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:
Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:
Обратите внимание! В делении дробей очень важен порядок деления.
Будьте внимательны, здесь легко запутаться. Обратите внимание, например:
При делении единицы на любую дробь, результатом будет та же самая дробь, только перевернутая:
Если пример содержит только действия II ступени, то их удобно выполнить под одной дробной чертой.
При вычислениях многоэтажных дробей часто удобно числитель и знаменатель записать в виде натуральных чисел. Для этого надо:
1) Найти НОК знаменателей в выражении многоэтажной дроби;
2) числитель и знаменатель многоэтажной дроби умножить на НОК их знаменателей, в результате записать числитель и знаменатель дроби целыми числами;
3) выполнить действия над целыми числами.
Образец: переход к натуральным числам
=
1) 3)
=
=
2) 4)
Пример (1) проще решить по действиям.
В примере (2) НОК находят устно, расставляют доп. множители, выполняют действия с натуральными числами по условию.
1. 1) 2)
3)
4)
5)
6)
7)
8)
2. 1) 2)
3)
4)
5)
6)
7)
8)
3. 1) 2)
3)
4)
5)
6)
7)
8)
4. 1) 2)
3)
4)
5)
6)
7)
6. 1) 1 + 2) 1 +
3)
4)
5)
Как решать четырехэтажные дроби
Урок Иванчук Н.В., учителя математики лицея № 1 г. Мурманска
Опубликовано: Резник Н.А. Многоэтажные дроби //
Математика в школе, 2002. №7. С. 55-60.
Материал предоставляется для свободного некоммерческого использования
с обязательной ссылкой на авторов (согласно ст. 1229 Гражданского кодекса РФ)
Тема «Действия с алгебраическими дробями» вызывает у учащихся 7-8 классов определённые трудности, так как требует хороших знаний материала, изученного ранее: «Действия с обыкновенными дробями», «Преобразование многочленов», «Формулы сокращённого умножения». Если предшествующие знания по каким-то причинам сформированы недостаточно прочно, то под наплывом нового материала они как бы растворяются и, как следствие, являются тормозом для дальнейшего успешного обучения. Успешно реализовывать задачу закрепления «старых» и формирования «новых» знаний позволяет визуализация учебного материала. Если учебная информация сопровождается определёнными рисунками, соответствующими формулами, зрительными подсказками, то её смысл становится видимым, понятным и, как следствие, лучше запоминается. Именно поэтому мы обратились к новым учебнику и задачнику для 7-го класса, выпущенных Санкт-Петербургским Институтом Продуктивного обучения Российской Академии Образования [1, 2]. В восьмом классе мурманского лицея № 1 по материалам данных учебника [1] и задачника [2] был проведён открытый урок «Многоэтажные дроби». Эта тема выбрана не случайно. В действующих учебниках она отражена мало (например, в учебнике под ред. С.А. Теляковского рассмотрен только один такой пример, решенный с помощью основного свойства дроби). Иногда «многоэтажность» заменяется традиционным действием деления, что приводит к громоздким и не всегда оправданным вычислениям. Однако на вступительных экзаменах в вузы часто встречаются задания, связанные с преобразованием многоэтажных дробей. На уроке мы попытались реализовать идею составления алгоритма преобразования многоэтажной дроби самими учащимися. Алгоритм деления дроби на дробь был рассмотрен на предыдущих уроках (а также алгоритмы умножения и сложения дробей). Поэтому лицеисты уже знали, что стрелками обозначено действие умножение. Поставив стрелки в первой записи, они без труда, видя окончательный результат, расставили стрелки и во втором выражении.
Выполнив преобразование многоэтажной дроби по алгоритму, лицеисты убедились, что в подобных случаях сокращать нельзя. В примере 3 (рис. 2-3, внизу слева). необходимо было сначала сократить дробь, а затем применить алгоритм преобразования многоэтажной дроби. Учащиеся с большой заинтересованностью зачеркивали общие множители, рисовали стрелки и заполняли пропуски. Для того чтобы выяснить, как усвоен алгоритм преобразования многоэтажной дроби в конце урока была проведена игра. Каждый ученик получил листок с шуточными заданиями «Шторм на море» (рис. 4-1) и «Полицейские и воры» (рис. 4-2). Учащиеся самостоятельно преобразовывали «многоэтажную дробь»: сокращали (зачёркивали) общие множители, ставили стрелки и записывали получившийся результат в пустую рамочку. После выполнения всеми этого упражнения, сверили получившиеся результаты с ответами, оформленными на обороте классной доски. Одни учащиеся рисовали маяк, корабль, штурвал и якорь, другие записывали только начальные буквы этих слов (рис. 4-3). (На рисунках внизу: Ш – шериф, П – полицейский, М – мошенница, К – карманник). Все лицеисты без ошибок справились с этим необычным и интересным для них заданием. Работать с визуальными учебными материалами учащимся очень нравится, так как на этих уроках они творят сами, не созерцают со стороны работу учителя и более сильных учащихся, а принимают активное участие в решении той или иной учебной задачи и видят результаты своей работы тут же. Подобные уроки проходят у детей эмоционально, они чувствуют себя первооткрывателями, радуются своим успехам, стремятся выполнить как можно больше разнообразных заданий, попробовать свои силы при решении довольно сложных упражнений. Так как на таких уроках мало пишется, но много думается, то польза от них колоссальная. Распечатать комплект визуальных дидактических материалов по теме данной статьи. Как решать примеры с многоэтажными дробями. Сложные выражения с дробями. Порядок действий. Умножение дроби на числоТеперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей? Переведем все дроби из первого выражения в неправильные, а затем выполним действия: Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей: Многоэтажные дробиДо сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке. Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров: Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом: Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:
В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Т.е. 12 = 12/1; 3 = 3/1. Получаем: В последнем примере перед окончательным умножением дроби были сокращены. Специфика работы с многоэтажными дробямиВ многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните: Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными: Если следовать этому правилу, то приведенные выше дроби надо записать так:
Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления: Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем: Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили число 46/1 в форме дроби, чтобы выполнить деление. Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность. Сложение дробей с одинаковыми знаменателямиСложение дробей бывает двух видов: Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если к пиццы прибавить пиццы, то получится пиццы: Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на две части. Если к пиццы прибавить еще пиццы, то получится одна целая пицца: Опять же складываем числители, а знаменатель оставляем без изменения: Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если к пиццы прибавить ещё пиццы, то получится пиццы: Пример 4. Найти значение выражения Этот пример решается точно также, как и предыдущие. Числители необходимо сложить, а знаменатель оставить без изменения: Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы и ещё прибавить пиццы, то получится 1 целая и ещё пиццы. Как видите в сложении дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила: Сложение дробей с разными знаменателямиТеперь научимся складывать дроби с разными знаменателями. Когда складывают дроби, знаменатели этих дробей должны быть одинаковыми. Но одинаковыми они бывают не всегда. Например, дроби и сложить можно, поскольку у них одинаковые знаменатели. А вот дроби и сразу сложить нельзя, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю. Существует несколько способов приведения дробей к одинаковому знаменателю. Сегодня мы рассмотрим только один из них, поскольку остальные способы могут показаться сложными для начинающего. Суть этого способа заключается в том, что сначала ищется (НОК) знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель. Аналогично поступают и со второй дробью — НОК делят на знаменатель второй дроби и получают второй дополнительный множитель. Затем числители и знаменатели дробей умножаются на свои дополнительные множители. В результате этих действий, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. В первую очередь находим наименьшее общее кратное знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 2. Наименьшее общее кратное этих чисел равно 6 Полученное число 2 это первый дополнительный множитель. Записываем его к первой дроби. Для этого делаем небольшую косую линию над дробью и записываем над ней найденный дополнительный множитель: Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби и получаем второй дополнительный множитель. НОК это число 6, а знаменатель второй дроби — число 2. Делим 6 на 2, получаем 3. Полученное число 3 это второй дополнительный множитель. Записываем его ко второй дроби. Опять же делаем небольшую косую линию над второй дробью и записываем над ней найденный дополнительный множитель: Теперь у нас всё готово для сложения. Осталось умножить числители и знаменатели дробей на свои дополнительные множители: Посмотрите внимательно к чему мы пришли. Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как складывать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца: Попробуем изобразить наше решение с помощью рисунка. Если к пиццы прибавить пиццы, то получится одна целая пицца и еще одна шестая пиццы: Первый рисунок изображает дробь (четыре кусочка из шести), а второй рисунок изображает дробь (три кусочка из шести). Сложив эти кусочки мы получаем (семь кусочков из шести). Эта дробь неправильная, поэтому мы выделили в ней целую часть. В результате получили (одну целую пиццу и еще одну шестую пиццы). Отметим, что мы с вами расписали данный пример слишком подробно. В учебных заведениях не принято писать так развёрнуто. Нужно уметь быстро находить НОК обоих знаменателей и дополнительные множители к ним, а также быстро умножать найденные дополнительные множители на свои числители и знаменатели. Находясь в школе, данный пример нам пришлось бы записать следующим образом: Но есть и обратная сторона медали. Если на первых этапах изучения математики не делать подробных записей, то начинают появляться вопросы рода «а откуда вон та цифра?», «почему дроби вдруг превращаются совсем в другие дроби? «. Чтобы легче было складывать дроби с разными знаменателями, можно воспользоваться следующей пошаговой инструкцией: Пример 2. Найти значение выражения Воспользуемся инструкцией, которая приведена выше. Шаг 1. Найти НОК знаменателей дробей Находим НОК знаменателей обеих дробей. Знаменатели дробей это числа 2, 3 и 4 Шаг 2. Разделить НОК на знаменатель каждой дроби и получить дополнительный множитель для каждой дроби Делим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби это число 2. Делим 12 на 2, получаем 6. Получили первый дополнительный множитель 6. Записываем его над первой дробью: Теперь делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби это число 3. Делим 12 на 3, получаем 4. Получили второй дополнительный множитель 4. Записываем его над второй дробью: Теперь делим НОК на знаменатель третьей дроби. НОК это число 12, а знаменатель третьей дроби это число 4. Делим 12 на 4, получаем 3. Получили третий дополнительный множитель 3. Записываем его над третьей дробью: Шаг 3. Умножить числители и знаменатели дробей на свои дополнительные множители Умножаем числители и знаменатели на свои дополнительные множители: Шаг 4. Сложить дроби у которых одинаковые знаменатели Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби, у которых одинаковые (общие) знаменатели. Осталось сложить эти дроби. Складываем: Сложение не поместилось на одной строке, поэтому мы перенесли оставшееся выражение на следующую строку. Это допускается в математике. Когда выражение не помещается на одну строку, его переносят на следующую строку, при этом надо обязательно поставить знак равенства (=) на конце первой строки и в начале новой строки. Знак равенства на второй строке говорит о том, что это продолжение выражения, которое было на первой строке. Шаг 5. Если в ответе получилась неправильная дробь, то выделить в ней целую часть У нас в ответе получилась неправильная дробь. Мы должны выделить у неё целую часть. Выделяем: Вычитание дробей с одинаковыми знаменателямиВычитание дробей бывает двух видов: Сначала изучим вычитание дробей с одинаковыми знаменателями. Тут всё просто. Чтобы вычесть из одной дроби другую, нужно из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить прежним. Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на четыре части. Если от пиццы отрезать пиццы, то получится пиццы: Опять же из числителя первой дроби вычитаем числитель второй дроби, а знаменатель оставляем без изменения: Этот пример можно легко понять, если вспомнить про пиццу, которая разделена на три части. Если от пиццы отрезать пиццы, то получится пиццы: Пример 3. Найти значение выражения Этот пример решается точно также, как и предыдущие. Из числителя первой дроби нужно вычесть числители остальных дробей: Как видите в вычитании дробей с одинаковыми знаменателями ничего сложного нет. Достаточно понимать следующие правила: Вычитание дробей с разными знаменателямиОбщий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью. Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Пример 1. Найти значение выражения: У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю. Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12 Теперь возвращаемся к дробям и Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью: Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью: Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители: Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца: Попробуем изобразить наше решение с помощью рисунка. Если от пиццы отрезать пиццы, то получится пиццы Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом: Первый рисунок изображает дробь (восемь кусочков из двенадцати), а второй рисунок — дробь (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь и описывает эти пять кусочков. Пример 2. Найти значение выражения У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю. Найдём НОК знаменателей этих дробей. Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30 Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби. Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью: Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью: Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью: Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители: Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример. Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке: В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь. Итак, находим НОД чисел 20 и 30: Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби на найденный НОД, то есть на 10 Умножение дроби на числоЧтобы умножить дробь на число, нужно числитель данной дроби умножить на это число, а знаменатель оставить без изменений. Умножим числитель дроби на число 1 Запись можно понимать, как взять половину 1 раз. К примеру, если пиццы взять 1 раз, то получится пиццы Эту запись можно понимать, как взятие половины от единицы. К примеру, если имеется 1 целая пицца и мы возьмем от неё половину, то у нас окажется пиццы: Умножим числитель дроби на 4 В ответе получилась неправильная дробь. Выделим в ней целую часть: Выражение можно понимать, как взятие двух четвертей 4 раза. К примеру, если пиццы взять 4 раза, то получится две целые пиццы Например, выражение можно вычислить двумя способами. Получился тот же результат 3. После сокращения четвёрок, на их месте образуются новые числа: две единицы. Но перемножение единицы с тройкой, и далее деление на единицу ничего не меняет. Поэтому решение можно записать покороче: Сокращение может быть выполнено даже тогда, когда мы решили воспользоваться первым способом, но на этапе перемножения числа 4 и числителя 3 решили воспользоваться сокращением: Связано это с тем, что число 7 и знаменатель дроби не имеют общего делителя, бóльшего единицы, и соответственно не сокращаются. Некоторые ученики по ошибке сокращают умножаемое число и числитель дроби. Делать этого нельзя. Например, следующая запись не является правильной: Умножение дробейЧтобы перемножить дроби, нужно перемножить их числители и знаменатели. Если в ответе получится неправильная дробь, нужно выделить в ней целую часть. Выражение можно понимать, как взятие пиццы от половины пиццы. Допустим, у нас есть половина пиццы: Как взять от этой половины две третьих? Сначала нужно поделить эту половину на три равные части: И взять от этих трех кусочков два: У нас получится пиццы. Вспомните, как выглядит пицца, разделенная на три части: Один кусок от этой пиццы и взятые нами два кусочка будут иметь одинаковые размеры: Другими словами, речь идет об одном и том же размере пиццы. Поэтому значение выражения равно Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби: В ответе получилась неправильная дробь. Выделим в ней целую часть: Пример 3. Найти значение выражения Умножаем числитель первой дроби на числитель второй дроби, а знаменатель первой дроби на знаменатель второй дроби: В ответе получилась правильная дробь, но будет хорошо, если её сократить. Чтобы сократить эту дробь, нужно числитель и знаменатель данной дроби разделить на наибольший общий делитель (НОД) чисел 105 и 450. Итак, найдём НОД чисел 105 и 450: Теперь делим числитель и знаменатель нашего ответа на НОД, который мы сейчас нашли, то есть на 15 Представление целого числа в виде дробиОбратные числаСейчас мы познакомимся с очень интересной темой в математике. Она называется «обратные числа». Определение. Обратным к числу a называется число, которое при умножении на a даёт единицу. Давайте подставим в это определение вместо переменной a число 5 и попробуем прочитать определение: Обратным к числу 5 называется число, которое при умножении на 5 даёт единицу. Можно ли найти такое число, которое при умножении на 5, даёт единицу? Оказывается можно. Представим пятёрку в виде дроби: Затем умножить эту дробь на саму себя, только поменяем местами числитель и знаменатель. Другими словами, умножим дробь на саму себя, только перевёрнутую: Что получится в результате этого? Если мы продолжим решать этот пример, то получим единицу: Обратное число можно найти также для любого другого целого числа. Найти обратное число можно также для любой другой дроби. Для этого достаточно перевернуть её. Деление дроби на числоДопустим, у нас имеется половина пиццы: Разделим её поровну на двоих. Сколько пиццы достанется каждому? Видно, что после разделения половины пиццы получилось два равных кусочка, каждый из которых составляет пиццы. Значит каждому достанется по пиццы. краткое содержание других презентаций ) и знаменатель на знаменатель (получим знаменатель произведения). Формула умножения дробей: Деление обыкновенной дроби на дробь.Деление дробей с участием натурального числа.Умножение смешанных дробей.Правила умножения дробей (смешанных): Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей. Второй способ умножения дроби на натуральное число.Бывает более удобно использовать второй способ умножения обыкновенной дроби на число. Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения. Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число. Многоэтажные дроби.В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример: Чтобы привести такую дробь к привычному виду, используют деление через 2 точки: Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться. Обратите внимание, например: При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая: Практические советы при умножении и делении дробей: 1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме. 3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно. 4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки. 5. Единицу на дробь делим в уме, просто переворачивая дробь. Умножение и деление дробей.Внимание! Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.: В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например: Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки: Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например: В первом случае (выражение слева): Во втором (выражение справа): Чувствуете разницу? 4 и 1/9! А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа: И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15: Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую. Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше! 3. Все дроби сокращаем до упора. 4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!). 5. Единицу на дробь делим в уме, просто переворачивая дробь. Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы. Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь. Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать. Вот они, ответы, через точку с запятой записаны. Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но. Это решаемые проблемы. Если Вам нравится этот сайт.Кстати, у меня есть ещё парочка интересных сайтов для Вас.) можно познакомиться с функциями и производными.
|