большая часть объема нервной ткани до 9 10 в некоторых областях мозга занята
Большая часть объема нервной ткани до 9 10 в некоторых областях мозга занята
Учебное пособие для студентов вузов
Почему нужно знать физиологию головного мозга психологу?
Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.
Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).
Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto – отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга – излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?
Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.
И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».
Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры – больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность: предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов – вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т.е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.
Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.
Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т.е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др., подробнее см. далее) некоторых характеристик психических функций – восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки – психофизиологии. Это обусловило взаимопроникновение двух областей знаний – психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр. Какие же подходы к исследованию физиологии головного мозга человека привели ученых к современной сумме знаний?
ЧИТАТЬ КНИГУ ОНЛАЙН: Основы нейрофизиологии
НАСТРОЙКИ.
СОДЕРЖАНИЕ.
СОДЕРЖАНИЕ
Валерий Викторович Шульговский
Учебное пособие для студентов вузов
Почему нужно знать физиологию головного мозга психологу?
Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.
Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).
Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto – отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга – излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?
Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.
И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».
Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры – больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность: предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов – вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т.е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.
Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.
Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т.е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции.
ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ
ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ
Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9 / 10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что нейрон выполняет в нашем организме гигантскую очень тонкую и трудную работу, для чего неоходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. – это обеспечивается другими, обслуживающими клетками, т.е. клетками глии (рис. 2.2.). В головном мозге выделяются три типа клеток глии: микроглию, олигодендроглию и астроглию, каждая из которых обеспечивает только ей предназначенную функцию. Клетки микроглии участвут в образовании мозговых оболочек, олигодендроглии – в образовании оболочек (милеиновх чехлов) вокруг отдельных отростков нервных клеток. Миелиновые оболочки вокруг периферических нервных волокон образуются специальными гниальными клетками – шванновскими клетками. Астроциты находятся вокруг нейронов, обеспечивая их механическую защиту, а кроме того, доставляют в нейрон питательные вещества и убирают шлаки. Клетки глии обеспечивают также электрическую изоляцию отдельных нейронов от воздействия других нейронов. Важной особенностью клеток глии является то, что в отличии от нейронов они сохраняют способность делиться на протяжении всей своей жизни. Это деление в некоторых случаях приводит к опухолевым заболеваниям головного мозга человека. Нервная клетка настолько специализирована, что утеряла способность к делению. Таким образом, нейроны нашего мозга, однажды образовавшись из клеток-предшественников (нейробластов), живут с нами всю нашу жизнь. На этом длительном пути мы только теряем нейроны нашего мозга.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Морфология и биология клематисов
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА КОРОЛЕВА УМЕРЛА — ДА ЗДРАВСТВУЕТ КОРОЛЕВА! То, что мы знаем, — ограниченно, а то, чего мы не знаем, — бесконечно. П. Лаплас Наука всегда оказывается не права. Она никогда не решит вопроса, не поставив при этом десятка новых. Б. Шоу Итак,
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА
ЧАСТЬ II. ФУНКЦИЯ ГЕНОМА ЧЕЛОВЕКА КОРОЛЕВА УМЕРЛА — ДА ЗДРАВСТВУЕТ КОРОЛЕВА! То, что мы знаем, — ограниченно, а то, чего мы не знаем, — бесконечно. П. Лаплас Наука всегда оказывается не права. Она никогда не решит вопроса, не поставив при этом десятка новых. Б. Шоу Итак,
ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий
ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий 1. Особенности строения бактериальной клетки. Основные органеллы и их функции Отличия бактерий от других клеток1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.2. В клеточной стенке бактерий
1. Морфология и структура вирусов
1. Морфология и структура вирусов Вирусы – микроорганизмы, составляющие царство Vira.Отличительные признаки:1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);2) не имеют собственных белоксинтезирующих и энергетических систем;3) не имеют клеточной
1. Морфология и культуральные свойства
1. Морфология и культуральные свойства Возбудитель относится к роду Carinobakterium, виду C. difteria.Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен выраженный полиморфизм. На концах булавовидные утолщения – метахроматические зерна волютина.
1. Морфология и культуральные свойства
1. Морфология и культуральные свойства Возбудитель относится к роду Mycobakterium, вид M. tuberculesis.Это тонкие палочки, слегка изогнутые, спор и капсул не образуют. Клеточная стенка окружена слоем гликопептидов, которые называются микозидами (микрокапсулами).Туберкулезная палочка
Морфология.
Морфология. Мы видели, что члены одного и того же класса, независимо от их образа жизни, сходны между собой по общему плану организации. Это сходство часто выражается термином «единство типа» или указанием на то, что некоторые части и органы у различных видов одного и того
Обезвреживающая функция печени
Обезвреживающая функция печени Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей
Эндокринная функция половых желез
Эндокринная функция половых желез На функции половых желез влияют релизинг-гормоны гипофиза и гормоны, выделяемые непосредственно половыми железами.Мужские половые гормоны.Гормоны, выделяемые мужскими половыми железами по своей природе являются стероидами и
Глава 6. АДАПТИВНАЯ МОРФОЛОГИЯ ОРГАНИЗМОВ
Глава 6. АДАПТИВНАЯ МОРФОЛОГИЯ ОРГАНИЗМОВ Среди приспособлений животных и растений к среде немаловажную роль играют морфологические адаптации, т. е. такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных
11.1. Социальная функция агрессивности
11.1. Социальная функция агрессивности Симпатическая нервная система, выбрасывая адреналин, резко повышает активность, ускоряет бег, усиливает обороноспособность, решительность. Ее антагонистом является центральная нервная система, которая уравновешивает порыв
Метаболическая и гедонистическая функция углеводов
Метаболическая и гедонистическая функция углеводов Необходимость поддержания определенного уровня глюкозы в крови обеспечивается на поведенческом уровне наличием гедонистической потребности в сладком, которая имеется у всех животных. Даже если сыты, они охотно
6.3. Эндокринная функция двенадцатиперстной кишки
6.3. Эндокринная функция двенадцатиперстной кишки Как отмечено выше, к началу 50-х годов нами были преодолены технические трудности, связанные с полным и атравматичным удалением двенадцатиперстной кишки и с пересадкой панкреатического и общего желчного протоков в тощую
6.3. Эндокринная функция двенадцатиперстной кишки
6.3. Эндокринная функция двенадцатиперстной кишки Как отмечено выше, к началу 50-х годов нами были преодолены технические трудности, связанные с полным и атравматичным удалением двенадцатиперстной кишки и с пересадкой панкреатического и общего желчного протоков в тощую
Глава 8. Нейрон или глия?
Глава 8. Нейрон или глия? Гемато-энцефалический барьер представляет собой сложную анатомическую, физиологическую и биохимическую систему, определяющую скорость проникновения отдельных веществ в мозг. На рис. 11 приведена схема сосудо-глио-нейронного комплекса, из
Текст книги «Основы нейрофизиологии»
Автор книги: Валерий Шульговский
Жанры:
Биология
Медицина
Текущая страница: 2 (всего у книги 17 страниц)
Часть I
ФИЗИОЛОГИЯ ГОЛОВНОГО МОЗГА ЧЕЛОВЕКА
Глава 1. Развитие нервной системы человека
Глава 2. Клетка – основная единица нервной ткани
Глава 3. Активирующие системы мозга
Глава 4. Физиологические механизмы регуляции вегетативных функций и инстинктивного поведения
Головной мозг человека устроен чрезвычайно сложно. Даже сейчас, когда мы знаем так много о мозге не только человека, но и ряда животных, мы, по-видимому, еще очень далеки от понимания физиологических механизмов многих психических функций. Можно сказать, что эти вопросы только включены в повестку дня современной науки. В первую очередь это касается таких психических процессов, как мышление, восприятие окружающего мира и памяти и многих других. Вместе с тем сейчас четко определены основные проблемы, которые придется решать в III тысячелетии. Что же может предъявить современная наука человеку, интересующемуся, как функционирует мозг человека? Прежде всего то, что в нашем мозге «работают» несколько систем, по крайней мере три. Каждую из этих систем можно даже назвать отдельным мозгом, хотя в здоровом мозге каждая из них работает в тесном сотрудничестве и взаимодействии. Что же это за системы? Это активирующий мозг, мотивационный мозг и познающий, или когнитивный (от лат. Cognitio – знание), мозг. Как уже указывалось, не следует понимать, что эти три системы, подобно матрешкам, вложены одна в другую. Каждая из них, помимо своей основной функции, например активирующая система (мозг), как участвует в определении состояния нашего сознания, циклов сон–бодрствование, так и является неотъемлемой частью познавательных процессов нашего мозга. Действительно, если у человека нарушен сон, то невозможен процесс учебы и другой деятельности. Нарушение биологических мотиваций может быть несовместимым с жизнью. Эти примеры можно множить, но главная мысль состоит в том, что мозг человека единый орган, обеспечивающий жизнедеятельность и психические функции, однако для удобства описания будем выделять в нем три указанных выше блока.
Глава 1
РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА
После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой – эктодерма, внутренний – эндодерма и между ними – мезодерма. Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.
В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.
В следующие 10–20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки мозговых структур, который заканчивается только с наступлением половозрелости (рис. 1.2). Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.
Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг – в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.
В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы. Их парные части имеют в своем составе передние рога, которые находятся в лобных долях, задние рога, находящиеся в затылочных долях, и нижние рога, расположенные в височных долях. Боковые желудочки соединяются с полостью промежуточного мозга, которая является III желудочком. Через специальный проток (сильвиев водопровод) III желудочек соединяется с IV желудочком; IV желудочек образует полость заднего мозга и переходит в спинномозговой канал. На боковых стенках IV желудочка находятся отверстия Люшки, а на верхней стенке – отверстие Мажанди. Благодаря этим отверстиям полость желудочков сообщается с подпаутинным пространством. Жидкость, заполняющая желудочки головного мозга, называется эндолимфой и образуется из крови. Процесс образования эндолимфы протекает в специальных сплетениях кровеносных сосудов, (они называются хороидальными сплетениями). Такие сплетения находятся в полостях III и IV мозговых желудочков.
Сосуды головного мозга. Головной мозг человека очень интенсивно снабжается кровью. Это связано, прежде всего, с тем, что нервная ткань одна из наиболее работоспособных в нашем организме. Даже ночью, когда мы отдыхаем от дневной работы, наш мозг продолжает интенсивно работать (подробнее см. раздел «Активирующие системы мозга»). Кровоснабжение головного мозга происходит по следующей схеме. Головной мозг снабжается кровью по двум парам основных кровеносных сосудов: общим сонным артериям, которые проходят в области шеи и их пульсация легко прощупывается, и паре позвоночных артерий, заключенных в латеральных частях позвоночного столба (см. приложение 2). После того как позвоночные артерии покидают шейный последний позвонок, они сливаются в одну базальную артерию, которая проходит в специальной ложбине на основании моста. На основании мозга в результате слияния перечисленных артерий образуется кольцевой кровеносный сосуд. От него кровеносные сосуды (артерии) веерообразно охватывают весь мозг, включая большие полушария.
Венозная кровь собирается в специальные лакуны и покидает пределы головного мозга по яремным венам. Кровеносные сосуды головного мозга вмонтированы в мягкую мозговую оболочку. Сосуды многократно ветвятся и в виде тонких капилляров проникают в мозговую ткань.
Головной мозг человека надежно защищен от проникновения инфекций так называемым гематоэнцефалическим барьером. Этот барьер формируется уже в первую треть срока беременности и включает в себя три мозговые оболочки (самая внешняя – твердая, затем паутинная и мягкая, которая прилежит к поверхности мозга, в ней находятся кровеносные сосуды) и стенки кровеносных капилляров мозга. Другой составляющей частью этого барьера являются глобальные оболочки вокруг кровеносных сосудов, образованные отростками клеток глии. Отдельные мембраны клеток глии тесно прилегают друг к другу, создавая щелевые контакты между собой.
В головном мозге есть участки, где гематоэнцефалический барьер отсутствует. Это район гипоталамуса, полость III желудочка (субфорникальный орган) и полость IV желудочка (area postrema). Здесь стенки кровеносных сосудов имеют специальные места (так называемый фенестрированный, т.е. продырявленный, эпителий сосудов), в которых из нейронов головного мозга в кровеносное русло выбрасываются гормоны и их предшественники. Подробнее эти процессы будут рассмотрены в гл. 5.
Таким образом, с момента зачатия (слияние яйцеклетки со сперматозоидом) начинается развитие ребенка. За это время, которое занимает почти два десятка лет, развитие человека проходит несколько этапов (табл. 1.1).
1. Этапы развития центральной нервной системы человека.
2. Периоды развития нервной системы ребенка.
3. Что составляет гематоэнцефалический барьер?
4. Из какой части нервной трубки развиваются сенсорные и моторные элементы центральной нервной системы?
5. Схема кровоснабжения головного мозга.
Коновалов А. Н., Блинков С. М., Пуцило М. В. Атлас нейрохирургической анатомии. М., 1990.
Моренков Э. Д. Морфология мозга человека. М.: Изд-во Моск. ун-та, 1978.
Оленев С. Н. Развивающийся мозг. Л., 1979.
Савельев С. Д. Стереоскопический атлас мозга человека. М.: Area XVII, 1996.
Шаде Дж., Форд П. Основы неврологии. М., 1976.
Глава 2
КЛЕТКА – ОСНОВНАЯ ЕДИНИЦА НЕРВНОЙ ТКАНИ
Головной мозг человека состоит из огромного количества разнообразных клеток. Клетка – основная единица биологического организма. Наиболее просто организованные животные могут иметь всего одну клетку. Сложные организмы состоят из мириадов клеток и являются, таким образом, многоклеточными. Но во всех этих случаях единицей биологического организма остается клетка. Клетки разных организмов – от человека до амебы – устроены очень похоже (рис. 2.1). Клетка окружена мембраной, которая отделяет цитоплазму от окружающей среды. Центральное место в клетке занимает ядро, в котором находится генетический аппарат, хранящий генетический код строения всего нашего организма. Но каждая клетка использует в своей жизнедеятельности только незначительную часть этого кода. Кроме ядра, в цитоплазме находится много других органелл (частиц). Среди них одной из самых важных является эндоплазматический ретикулум, составленный из многочисленных мембран, на которых закреплено множество рибосом. На рибосомах происходит сборка молекул белка из отдельных аминокислот по программе генетического кода. Часть эндоплазматического ретикулума представлена аппаратом Гольджи (стопки двойных мембран, плотно прилежащих друг к другу). Таким образом, эндоплазматический ретикулум – это своеобразная фабрика, оснащенная всем необходимым для производства белковых молекул. Другими очень важными органеллами клетки являются митохондрии, благодаря деятельности которых в клетке постоянно поддерживается необходимое количество АТФ (аденозинтрифосфата) – универсального «горючего» клетки.
Нейрон, являющийся структурной основной единицей нервной ткани, имеет все перечисленные выше структуры. Вместе с тем нейрон предназначен природой для обработки информации и в связи с этим имеет определенные особенности, которые биологи называют специализацией. Выше был описан самый общий план строения клетки. На самом деле любая клетка нашего организма приспособлена природой для выполнения строго определенной, специализированной функции. Например, клетки, составляющие сердечную мышцу, обладают способностью сокращаться, а клетки кожи защищают наш организм от проникновения микроорганизмов.
Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9 /10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что нейрон выполняет в нашем организме гигантскую очень тонкую и трудную работу, для чего неоходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. – это обеспечивается другими, обслуживающими клетками, т.е. клетками глии (рис. 2.2.). В головном мозге выделяются три типа клеток глии: микроглию, олигодендроглию и астроглию, каждая из которых обеспечивает только ей предназначенную функцию. Клетки микроглии участвут в образовании мозговых оболочек, олигодендроглии – в образовании оболочек (милеиновх чехлов) вокруг отдельных отростков нервных клеток. Миелиновые оболочки вокруг периферических нервных волокон образуются специальными гниальными клетками – шванновскими клетками. Астроциты находятся вокруг нейронов, обеспечивая их механическую защиту, а кроме того, доставляют в нейрон питательные вещества и убирают шлаки. Клетки глии обеспечивают также электрическую изоляцию отдельных нейронов от воздействия других нейронов. Важной особенностью клеток глии является то, что в отличии от нейронов они сохраняют способность делиться на протяжении всей своей жизни. Это деление в некоторых случаях приводит к опухолевым заболеваниям головного мозга человека. Нервная клетка настолько специализирована, что утеряла способность к делению. Таким образом, нейроны нашего мозга, однажды образовавшись из клеток-предшественников (нейробластов), живут с нами всю нашу жизнь. На этом длительном пути мы только теряем нейроны нашего мозга.
Нейрон является главной клеткой центральной нервной системы. Формы нейронов чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей: сомы (тела) и многочисленных разветвленных отростков. У каждого нейрона есть два типа отростков: аксон, по которому возбуждение передается от нейрона к другому нейрону, и многочисленные дендриты (от греч. дерево), на которых заканчиваются синапсами (от греч. контакт) аксоны от других нейронов. Нейрон проводит возбуждение только от дендрита к аксону.
Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам, мышечным, железистым и другим клеткам.
На рис. 2.3 показана схема нейрона, на которой легко прослеживаются его основные части.
Нейроны разных отделов мозга выполняют очень разнообразную работу, и в соответствии с этим форма нейронов из разных частей головного мозга также многообразна (рис. 2.4). Нейроны, расположенные на выходе нейронной сети какой-то структуры, имеют длинный аксон, по которому возбуждение покидает данную мозговую структуру. Например, нейроны двигательной коры головного мозга, так называемые пирамиды Беца (названные в честь киевского анатома Б. Беца, впервые их описавшего в середине XIX века), имеют у человека аксон около 1 м, он соединяет двигательную кору больших полушарий с сегментами спинного мозга. По этому аксону передаются «двигательные команды», например «пошевелить пальцами ноги». Как возбуждается нейрон? Основная роль в этом процессе принадлежит мембране, которая отделяет цитоплазму клетки от окружающей среды. Мембрана нейрона, как и любой другой клетки, устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение (рис. 2.5): слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7–11 нм. Чтобы представить эти размеры, вообразите, что толщина вашего волоса уменьшилась в 10 тыс. раз. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов: натрия, калия, кальция, хлора. Это так называемые ионные каналы. Другие частицы прикреплены на внешней поверхности мембраны и состоят не только из молекул белка, но и из полисахаридов. Это рецепторы для молекул биологически активных веществ, например медиаторов, гормонов и др. Часто в состав рецептора, кроме места для связывания специфической молекулы, входит и ионный канал.
Главную роль в возбуждении нейрона играют ионные каналы мембраны. Эти каналы бывают двух видов: одни работают постоянно и откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия. Благодаря работе этих каналов (их называют еще насосными каналами или ионным насосом), постоянно потребляющих энергию, в клетке создается разность концентраций ионов: внутри клетки концентрация ионов калия примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая – примерно в 50 раз меньше, чем снаружи клетки. Свойство мембраны постоянно поддерживать разность ионных концентраций между цитоплазмой и окружающей средой характерно не только для нервной, но и для любой клетки организма. В результате между цитоплазмой и внешней средой на мембране клетки возникает потенциал: цитоплазма клетки заряжается отрицательно на величину около 70 мВ относительно внешней среды клетки. Измерить этот потенциал можно в лаборатории стеклянным электродом, если в клетку ввести очень тонкую (меньше 1 мкм) стеклянную трубочку, заполненную раствором соли. Стекло в таком электроде играет роль хорошего изолятора, а раствор соли – проводника. Электрод соединяют с усилителем электрических сигналов и на экране осциллографа регистрируют этот потенциал. Оказывается, потенциал порядка –70 мВ сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия. Другими словами, в создании этого потенциала участвуют только ионы калия, в связи, с чем этот потенциал получил название «калиевый потенциал покоя», или просто «потенциал покоя». Таким образом, это потенциал любой покоящейся клетки нашего организма, в том числе и нейрона.
Нейрон в отличие от других клеток способен возбуждаться. Под возбуждением нейрона понимают генерацию нейроном потенциала действия. Основная роль в возбуждении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Напомним, что благодаря постоянной работе насосных каналов концентрация натриевых ионов вне клетки примерно в 50 раз больше, чем в клетке, поэтому при открытии натриевых каналов ионы натрия устремляются в клетку, а ионы калия через открытые калиевые каналы начинают выходить из клетки. Для каждого типа ионов – натрия и калия – имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией.
Ответим на вопрос: как ионные каналы открываются и закрываются? В покоящемся нейроне натриевые каналы мембраны закрыты и на мембране, как это уже описывалось выше, регистрируется потенциал покоя порядка –70 мВ (отрицательность в цитоплазме). Если потенциал мембраны деполяризовать (уменьшить поляризацию мембраны) примерно на 10 мВ, натриевый ионный канал открывается (рис. 2.6). Действительно, в канале имеется своеобразная заслонка, которая реагирует на потенциал мембраны, открывая этот канал при достижении потенциала определенной величины. Такой канал называется потенциалзависимым. Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия, которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту.Таким образом, в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону деполяризации, т.е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется. Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал –70 мВ, тогда абсолютная амплитуда потенциала составит величину около 125 мВ. Мы говорим «около», «примерно» потому, что у клеток разного размера и типов этот потенциал может несколько отличаться, что связано с формой этих клеток (например, количеством отростков), а также с особенностями их мембран.
Все изложенное выше можно формально описать следующим образом. В покое клетка ведет себя как «калиевый электрод», а при возбуждении – как «натриевый электрод». Однако после того как потенциал на мембране достигнет своего максимального значения +55 мВ, натриевый ионный канал со стороны, обращенной в цитоплазму, закупоривается специальной белковой молекулой. Это так называемая «натриевая инактивация» (см. рис. 2.6); она наступает примерно через 0,5–1 мс и не зависит от потенциала на мембране. Мембрана становится непроницаемой для натриевых ионов. Для того чтобы потенциал мембраны вернулся к исходному состоянию-состоянию покоя, необходимо, чтобы из клетки выходил ток положительных частиц. Такими частицами в нейронах являются ионы калия. Они начинают выходить через открытые калиевые каналы. Вспомните, что в клетке в состоянии покоя накапливаются ионы калия, поэтому при открывании калиевых каналов эти ионы покидают нейрон, возвращая мембранный потенциал к исходному уровню (уровню покоя). В результате этих процессов мембрана нейрона возвращается к состоянию покоя (–70 мВ) и нейрон готовится к следующему акту возбуждения.
Таким образом, выражением возбуждения нейрона является генерация на мембране нейрона потенциала действия. Его длительность в нервных клетках составляет величину около 1/1000 с (1 мс). Описанная последовательность событий приведена на рис. 2.7.
Подобные потенциалы действия могут возникать и в других клетках, назначение которых – возбуждаться и передавать это возбуждение другим клеткам. Например, сердечная мышца имеет в своем составе специальные мышечные волокна, обеспечивающие бесперебойную работу сердца в автоматическом режиме. В этих клетках также генерируются потенциалы действия (рис. 2.8). Однако они имеют затянутую, почти плоскую вершину, и длительность такого потенциала действия может затянуться до нескольких сот миллисекунд (сравните с 1 мс у нейрона). Такой характер потенциала действия мышечной клетки сердца физиологически оправдан, так как возбуждение сердечной мышцы должно быть длительным, чтобы кровь успела покинуть желудочек. С чем же связан такой затянутый потенциал действия у этого типа клетки? Оказалось, в мембране этих клеток натриевые ионные каналы не так быстро закрываются, как в нейронах, т.е. натриевая инактивация затянута.
Как ясно из этого описания, возбуждение (потенциал действия) нейрона сменяется так называемым «покоем». Однако никакого покоя в этот период нет. Как уже указывалось выше, в мембране есть еще и насосные каналы, количество которых примерно в 10 раз больше ионных, и они постоянно работают, откачивая из цитоплазмы излишек ионов натрия и закачивая туда недостающие ионы калия. Благодаря неустанной работе этих каналов нейрон всегда готов к возбуждению.
Описанный выше механизм возбуждения клетки (конечно, далеко не все клетки нашего организма способны возбуждаться) в основных чертах одинаков не только в нейронах и мышечных клетках человека, но и в аналогичных клетках других организмов. Например, в нейронах моллюсков, червей, крыс и обезьян при возбуждении происходят описанные выше последовательности событий. Более того, конструкция мембран, включая каналы, также примерно одинакова у всех организмов Земли.
Как уже указывалось, каналы представляют собой белковые молекулы, «прошивающие» мембрану (одна часть молекулы находится в цитоплазме, а другая во внеклеточной среде). Интересно, что эти белковые молекулы, образующие ионный или насосный каналы, не вечны, а постоянно заменяются на новые (примерно каждые несколько часов). Все это свидетельствует об очень большой динамичности структуры нейрона.
Нейрон способен к возбуждению, которое состоит в том, что мембрана нейрона в состоянии покоя имеет потенциал порядка –70 мВ (отрицательность в цитоплазме), а в состоянии возбуждения приобретает потенциал +55 мВ. Таким образом, абсолютная величина потенциала действия – около 125 мВ. Длительность потенциала действия нейрона составляет всего около 1 мс (1/1000 с).
Далее это возбуждение (потенциал действия) должно передаться другому нейрону или какой-то другой клетке, например мышечной, железистой и др.